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Abstract—In this study, we consider the problem of detecting
process-related anomalies for machine tools. The similar shape
of successive sensor signals, which arises due to the same process
step sequence applied to each workpiece, suggests extracting
shape-related features. In recent years, shapelets dominated the
field of shape-related features. Unfortunately, they involve a high
computational burden due to hyperparameter optimization.

We introduce alternative shape-related features relying on
abrupt signal changes (changepoints) reflecting the changes of
process steps. During normal operation, changepoints follow a
highly recurrent pattern, i.e., appear at similar locations. Thus,
being able to distinguish regular, recurrent from abnormal, non-
recurrent changepoints allows detecting process anomalies.

For changepoint recurrence estimation, we extend the Bayesian
Online Changepoint Detection (BOCPD) method. The extension
allows distinguishing normal and abnormal changepoints relying
on empirical estimates of the changepoint recurrence distribution.
Subsequently, changepoint-related features are introduced and
compared to shapelets and wavelet-based features in a case study
comprising real-world machine tool data.

Qualitative results verify changepoint locations being compa-
rable to shapelet locations found by the FLAG shapelet approach.
Furthermore, quantitative results suggest superior classification
performance both to shapelets and wavelet-based features.

Index Terms—Bayesian methods, changepoint estimation,
anomaly detection, machine monitoring

I. INTRODUCTION

In this study, we focus on detection of process-related

anomalies in machine tools. For this purpose, a vibration

sensor is attached close to the chipping tool. Due to the

same processing steps applied to each workpiece, successive

signals recorded during the machining of each workpiece

show a similar shape. This suggests the use of shape-related

features for detecting process-related anomalies. In recent

years, shapelets [1] established themselves among the most

promising methodological directions. Shapelets are defined

as most informative time series subsequences to represent

discriminative differences of signal classes. Unfortunately,

shapelet methods often involve optimizing hyperparameters in

order to find the optimal length, position and smoothness of

shapelets. This results in a high computational burden.

We introduce changepoint-related features as an alternative

to shapelets for machine tool monitoring. Changepoints are

defined as variations in the parameters of the generative

signal model [2]. These deterministic features come without

the necessity to optimize hyperparameters. In order to verify

the competitiveness of changepoint features, we compare to

shapelets and popular wavelet-based features in a case study

with real-world machine tool data.

We study for which of these data sets changepoint loca-

tions bear discriminative information and summarize assump-

tions for data characteristics that allow for a changepoint-

related detection of process anomalies. Finally, we outline

the benefits of being able to distinguish normal recurrent

changepoints (which arise due to the repetitive processing step

sequence) from non-recurrent (i.e., abnormal) changepoints. In

order to estimate recurrence of changepoints, we introduce

an empirical changepoint recurrence distribution (CPRD).
Extracting the proposed features separately from recurrent

and non-recurrent changepoints outperforms extracting them

from standard BOCPD changepoints and results in a superior

performance compared to shapelets and wavelet features.

II. RELATED WORK

A. Changepoint Estimation

Changepoints can be estimated via piecewise linear appro-

ximation [3], clustering models [4], [5], Hidden Markov Mo-

dels [6], [7] or methods involving penalized likelihood func-

tions [8]–[10]. The methods in this work built on BOCPD [2].

In [11], Maslov et al. proposed an approach to model

recurrence of BOCPD changepoints. Recurrence was defined

by quasi-periodicity, i.e., by assuming periodic changepoints

while allowing small deviations of individual changepoints

from this periodic behavior. This method does not allow mode-

ling generic recurrences. For example, changepoints related to

machine tool processing steps appear in a recurrent manner but

not periodically (i.e., with similar inter-changepoint distances).

Wilson et al. proposed hierarchical BOCPD extensions [12].

Although this approach allows inferring adaptive estimates of

the typical frequency (hazard rate) of changepoints, it does

not allow to model a recurrent changepoint prior distribution

or distinguish recurrent from non-recurrent changepoints.

B. Signal Form Sensitive Features: Shapelets

In [1], Ye et al. proposed shapelets for time series feature

learning. Shapelets are sensitive to ordering of time series

samples and thus signal form, which allows using them as

locally expressive primitives for anomaly detection.
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Whereas [1] found shapelets parallel to constructing a deci-

sion tree, authors in [13] extended the approach to off-the-shelf

classifiers by suggesting distance measures between shapelets

and signals to produce a transformed data set. As neither

length nor position of most informative signal subsequences

can be constrained a priori in shapelet selection, finding

shapelets resulted in a combinatorial problem. In [14], authors

proposed learning shapelets jointly with a linear Support

Vector Machine (SVM) rather than finding most discriminative

subsequences. This resulted in a highly nonlinear optimization

problem, which involved a similar computational effort as [1].

In addition to optimizing length and position of shapelets,

learning shapelets in [14] involves optimizing shapelet smooth-

ness. While overly smooth shapelets suppress shape details,

non-smooth shapelets yield overfitting to shape details of

training signals and thus bad generalization to future test data.

C. Frequency-related Features: Wavelets

In [15], Teti et al. gave an overview over common machine

monitoring features. For rotating machinery, wavelet features

were listed among most common choices. We extract features

mean, variance and peak-to-peak-distance in wavelet sub-

bands for a comparison with changepoint-related features.

III. THEORETICAL BACKGROUND

In recent literature, BOCPD manifested among the most

powerful changepoint estimators [2]. BOCPD assumes that

a predictive distribution p
(
xt+1|x1:t

)
at time step t can be

computed from observations x1:t (i.e., measurement data) and

a latent run length variable rt [2]. This run length rt is defined

as the distance to the last changepoint having occurred in the

data. By integrating over the posterior distribution p
(
rt|x1:t

)
on the run length rt, this marginal predictive distribution can

be calculated by

p
(
xt+1|x1:t

)
=

∑
rt

p
(
xt+1|rt,x(r)

t

)
p
(
rt|x1:t

)
(1)

Here, x
(r)
t are observations associated with the current run

rt, i.e., the last rt observations of x1:t [16]. In changepoint

detection, however, the focus of interest is not on predicting

future observations xt+1, but in finding estimates of the current

run length rt via the conditional posterior distribution

p
(
rt|x1:t

)
=

p
(
rt,x1:t

)
p
(
x1:t

) . (2)

Henceforth, p(rt|x1:t) is referred to as run length distribution.

As its probability mass is highly concentrated at a few peaks,

pruning of run lengths with a probability below a threshold

(e.g., ε = 10−4) can be applied. This reduces run time from

O(
T 2

)
to O(

T/ε
)

as outlined in [16].

The distribution p
(
rt,x1:t

)
can be found recursively [2]:

p
(
rt,x1:t

)
=

∑
rt−1

p
(
rt|rt−1

)
p
(
xt|rt−1,x

(r)
t

)
p
(
rt−1,x1:t−1

)

(3)

The right-hand side of Eq. 3 consists of three terms:

1) The predictive distribution p
(
xt|rt−1,x1:t

)
collapses to

p
(
xt|rt−1,x

(r)
t

)
, thus depending only on recent x

(r)
t .

2) A joint distribution p
(
rt−1,x1:t−1

)
from time step t−1.

3) A conditional prior distribution p
(
rt|rt−1

)
on change-

points (i.e., rt = 0). Adams et al. proposed to define it

as follows for efficient computation (nonzero probability

mass only for outcomes rt = 0 and rt = rt−1 + 1) [2]:

p
(
rt|rt−1

)
=

⎧⎪⎨
⎪⎩

H
(
rt−1 + 1

)
if rt = 0

1−H
(
rt−1 + 1

)
if rt = rt−1 + 1

0 otherwise

(4)

In the simplest case, the hazard function H(τ) is assumed

constant H(τ) = 1/λ, resulting in changepoint estimates

p
(
rt = 0|rt−1

)
independent of rt−1 [2]. The constant scale

parameter λ has to be defined in advance or treated as a further

model hyperparameter which has to be optimized [16], [17].

IV. PROPOSED METHODS

A. Changepoint Recurrence Distribution (CPRD)

Due to a typical concentration of probability mass of

p
(
rt|x1:t) at a dominant peak, the most probable run length

estimate r̂t can be approximated sensibly at the maximum a

posteriori (MAP) estimate of the run length distribution, i.e.,

r̂t = argmax
rt

p
(
rt|x1:t

)
(5)

According to [2], changepoints can be assigned at r̂t = 0.

However, for machine tool data with potentially smooth transi-

tions between signal segments, changepoints at these segment

borders do not necessarily lead to r̂t = 0, but to a major drop

in this most probable run length estimate r̂t. Drops in r̂t (i.e.,

where r̂t does not increase by one) can then be interpreted as

changepoints with a non-zero changepoint probability

p
(
ct|x1:t

)
� p

(
r̂t|x1:t

)∣∣∣∣
∂r̂t
∂t �=1

(6)

Changepoints ct occur not necessarily due to recurrent changes

of process steps, but can also be due to signal fluctuations

or anomalies. This motivates the necessity to filter recurrent

changepoints from the set of all changepoints. In order to

achieve this filtering, we propose the following approach.

Changepoint probability vectors p
(
c
(n)
t |x1:t

)
of N training

signals are summed up across time steps t = 1 . . . T (Fig. 1,

bottom). For each training signal n = 1 . . . N , the cumulative

probability mass
∑N

n=1 p
(
c
(n)
t |x1:t

)
increases at locations t of

changepoints c
(n)
t (i.e., locations t with non-zero probabilities

p
(
c
(n)
t |x1:t

)
) while staying the same at other time steps

t where p
(
c
(n)
t |x1:t

)
= 0. Normalizing

∑N
n=1 p

(
c
(n)
t |x1:t

)
allows interpretation as an empirical probability distribution

over recurrence of changepoint positions [18]. We name this

distribution changepoint recurrence distribution (CPRD).

p
(
c
(1:N)
t |c(n)t ,x1:t

)
�

∑N
n=1 p

(
c
(n)
t |x1:t

)
∑N

n=1

∑T
t=1 p

(
c
(n)
t |x1:t

) (7)
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Recurrence of changepoints c
(n)
t at locations t across signals

n = 1 . . . N is denoted by the term c
(1:N)
t . p

(
c
(1:N)
t |c(n)t ,x1:t

)
thus gives an empirical estimate how likely changepoints c

(n)
t

at locations t were present in all former N signals. This

approach thus yields a nonparametric maximum likelihood

estimate of recurrent changepoint probabilities [19].

The CPRD can be used to replace the uninformative hazard

function H(τ) = 1/λ. This allows incorporating empirical

information about the recurrence of changepoints directly

into the changepoint prior p
(
rt|rt−1

)
. Instead, an alternative

approach by estimating all changepoints via BOCPD and

using the CPRD to subsequently filter recurrent changepoints

from the set of all changepoints is chosen: By multiplying

initial BOCPD changepoint estimates p
(
c
(n)
t |x1:t

)
with the

empirical CPRD probabilities p
(
c
(1:N)
t |c(n)t ,x1:t

)
, a filtering

of changepoint estimates regarding their probability of being

recurrent is obtained. In the Bayesian framework, this can be

interpreted as applying Bayes’ Theorem:

p
(
c
(n)
t |c(1:N)

t ,x1:t

)
=

p
(
c
(1:N)
t |c(n)t ,x1:t

)
p
(
c
(n)
t |x1:t

)

p
(
c
(1:N)
t |x1:t

) (8)

As discussed earlier, the CPRD p
(
c
(1:N)
t |c(n)t ,x1:t

)
acts as

a nonparametric estimate of the likelihood of changepoint

recurrence. The initial BOCPD changepoint probabilities

p
(
c
(n)
t |x1:t

)
for signal n are interpreted as prior estimates of

recurrent changepoints. As the goal of the presented approach

is finding non-zero probabilities of p
(
c
(n)
t |c(1:N)

t ,x1:t

)
, nor-

malization to the prior distribution on changepoint recurrence

p
(
c
(1:N)
t |x1:t

)
does not have to be considered:

p
(
c
(n)
t |c(1:N)

t ,x1:t

) ∝ p
(
c
(1:N)
t |c(n)t ,x1:t

)
p
(
c
(n)
t |x1:t

)
(9)

Non-zero probabilities p
(
c
(n)
t |c(1:N)

t ,x1:t

)
indicate recurrent

changepoints. Non-recurrent changepoints are then found

as symmetric set difference between BOCPD changepoints

p
(
c
(n)
t |x1:t

)
and recurrent changepoints. Thus, subsequent

filtering of BOCPD changepoints outputs both recurrent

and non-recurrent changepoints. Instead, using the CPRD as

hazard function suppresses non-recurrent changepoints. The

CPRD hazard function only yields more robust estimates of re-

current changepoints. Additional to predicting future recurrent

changepoints, this allows extracting features in comparable

segments of each signal, which proved beneficial in tool

condition monitoring [20].

B. Run Length Primitives

Due to the challenges involved in finding optimal position,

length and smoothness of shapelets, we propose alterna-

tive features relying on the deterministic information given

by changepoint locations and distances. Both locations and

distances of changepoints are encoded in MAP run length

estimates r̂t (Fig. 1, middle, red line), that come as a byproduct

of the BOCPD algorithm. In the following, we will refer

to them as run length primitives. Run length primitives are

expressive of the data-generating process (e.g., processing
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Fig. 1: CPRD estimation. Top: Envelope signal of data

set 1 (DS1). Middle: BOCPD run length log probabilities

log
(
p
(
rt|x1:t

))
are depicted as gray values, MAP run length

estimates r̂t as red line. Bottom: Changepoint probabilities

p
(
cnt |x1:t

)
for the single signal envelope from top figure. Ele-

ments of p
(
cnt |x1:t

)
for all N training signals are accumulated

across window indices t and normalized in a final step.

step sequence) in machine tool applications in that they

are influenced by positions and distances of changepoints

but not by signal variations between them. They can thus

be interpreted as features incorporating the information of

signal event locations (i.e., regular changes of processing steps

and anomalies) while sequences between these events are

approximated by non-informative linearly increasing slopes.

This yields an automatic, deterministic solution for the trade-

off mentioned above regarding choice of smoothness, positions

and lengths of representative signal primitives.

V. CASE STUDY: MACHINE TOOL MONITORING

A. Motivating Changepoint-Related Anomaly Detection

When a sensor is placed sufficiently close to the cutting tool,

similar segments can be observed in successive signals related

to the same sequence of processing steps applied to each

workpiece. Changes in processing steps reflect in additional

non-recurrent changepoints or missing recurrent changepoints

and thus allow for detection of process-related anomalies.

B. Sensor Specifications and Data Sets

The data sets of this case study were recorded at different

cutting machine tools using microelectromechanical system

(MEMS) vibration sensors. The vibration sensors have a single

degree of freedom and sample at a rate of 62.5 kHz.

Data sets comprise sensor signals for six machine tool

monitoring applications (cf. Table I). Data set 1 (DS1) con-

tains signals for different degrees of severity of a grinding

wheel anomaly. Data set 2 (DS2) comprises signals containing

abnormal machine part contacts. Data set 3 (DS3) contains
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data for grinding of a workpiece with complex structure,

where a gradual decrease in workpiece quality occurs when

re-sharpening of the grinding wheel is not applied timely.

Thus, DS3 data allows finding out whether changepoint shifts

coincide with continuous drifts in signal shape reflecting the

decrease of workpiece quality. Data set 4 (DS4) contains

data for a turning machine. This data set is used to find

out whether breakage of the turning tool can be related to

changepoint patterns. Data set 5 and 6 anomalies occurred due

to imprecise positioning of the workpieces on the workpiece

rest and resulting damages in the grinding wheel.

TABLE I: Data sets and parameter variations.

Data set Records Normal Abnormal Machine type
DS1 430 312 118 Grinding
DS2 499 400 99 Grinding
DS3 91 59 32 Grinding
DS4 69 66 3 Turning
DS5 3301 3008 293 Grinding
DS6 3692 3670 22 Grinding

C. Experimental Setup

As processing step information is encoded mostly in energy

of the signal envelopes, signal envelope representations are

computed via 1
M

∑
M |xt| in each successive signal window

of size M = 1024 observations xt. These signal envelope rep-

resentations are then used as input for the BOCPD algorithm.

In order to use run length primitives with off-the-shelf clas-

sifiers, we construct Euclidean similarity measures between

shapelets and signals like introduced in [13]. This allows

comparison with shapelet approaches like Fused Lasso Gene-

ralized Eigenvector (FLAG) [21]. FLAG is chosen as it yields

locally sparse, blocky shapelets by regularizing with a fused

lasso [22]. The positions of these shapelets are marked by the

FLAG indicator vector. To study the relevance of changepoint

information in machine tool applications qualitatively, we

compare changepoint locations to the FLAG indicator vector.

In accordance with FLAG, we classify with a linear SVM

trained with the LIBSVM framework [23]. FLAG hyperpa-

rameters α1 and α2 are set by cross-validation.

D. Time Complexity

According to [21], FLAG training complexity is O(
T 3 +

MT 2
)
. Here, T is the length of time series and M the number

of iterations of the ADMM solver. For optimization of FLAG

hyperparameters α1 and α2, grid search cross-validation re-

sults in a factor |α1⊗α2|, where ⊗ is the Kronecker operator

and | · | the cardinality operator. Overall training complexity

including grid search hyperparameter optimization thus yields

a complexity O(|α1 ⊗ α2|
(
T 3 +MT 2

))
cubic in T .

Training complexity for our changepoint-related approach

can be divided into O(
T/ε

)
for run length estimation (cf. sec-

tion III) and O((
N + 1

)
T ) both for computation of the

CPRD and run length primitives. In summary, this results in

O((
1
ε +N + 1

)
T ), i.e., linear training complexity.

E. Results

1) CPRD Estimation: CPRDs for DS1 to DS3 (black lines)

are depicted in Fig. 2. The broad distribution of probability

mass for DS3 results from the non-stationarity, i.e. less recur-

rent normal changepoint pattern (cf. Fig. 3c). For the other data

sets with stationary normal changepoints, CPRD probability

mass is concentrated at indices of normal changepoints.
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Fig. 2: CPRDs (black lines) and KDE fits (red lines).

Each subfigure additionally shows a Gaussian kernel density

estimator (KDE) (red lines) fitted to the CPRDs. KDE post-

processing yields similar smoothing effects like estimating the

CPRD with a larger number of changepoints and thus a more

robust estimator of changepoint recurrence, although indivi-

dual changepoints of normal signals are marked abnormal (cf.

Fig.s 3a and 3b). Changepoint filtering results in the following

section were obtained with KDE fits, not the original CPRDs.
2) Filtering BOCPD Changepoints via CPRD: Fig. 3a

depicts changepoints for DS1. Recurrent changepoints likely

under the CPRD KDE fit (Fig. 2a, red line) are shown as blue

dots, non-recurrent changepoint estimates as white dots.

MAP run length estimates r̂t are plotted gray-coded in

horizontal direction for all signals. Thus, each row depicts

the bird’s-eye view of the MAP run length estimate for one

envelope signal like depicted in the middle plot of Fig. 1.

DS1 normal data consists of signals nr. 1 to 91. Signals nr. 1

to 60 (white overlay) are used for CPRD estimation (Fig. 2a,

black line) and subsequent KDE fitting (Fig. 2a, red line).

Below, run length estimates for different degrees of grinding

wheel anomalies (separated by white lines) are plotted. For all

degrees of grinding wheel anomalies, changepoints between

indices 700 and 970 vanish. Depending on the degrees of

the anomaly, changepoints from index 970 onward vanish or

abnormal changepoints between indices 300 and 400 occur.

These changepoints persist during abnormal behavior.

DS2 shows a similarly discrete change between changepoint

patterns for normal data (workpiece nr. 1 to 201) and abnormal

data, where an additional changepoint occurs at index 55 due

to impulse-like artifacts in each abnormal signal (cf. Fig. 3b).

For DS3, each four signals after re-sharpening the grin-

ding wheel (white lines) were assumed normal and used for

CPRD estimation. This assumption was made as a decrease in

workpiece quality appeared after four workpieces according

to domain experts. Other than for DS1 and DS2, only normal

changepoints around indices 500, 2500 and 3000 expose a

stationary, recurrent pattern (cf. Fig. 3c). This results in a

broadly distributed CPRD probability mass (cf. section V-E1)

and the normal changepoints not assembled around indices
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(a) DS1 (b) DS2 (c) DS3

Fig. 3: MAP run length estimates r̂t (gray values), recurrent changepoints (blue dots) and non-recurrent changepoints (white

dots) filtered from initial BOCPD changepoint estimates. White overlays mark training examples selected for CPRD calculation.
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Fig. 4: Run length primitives for DS1 to DS3: Comparison of standard BOCPD changepoint locations and FLAG shapelet

locations. Figures 4a to 4c show signal envelope examples for classes normal (blue) and abnormal (red) (first subfigure), FLAG

indicator vectors (second subfigure) and run length log probabilities log(p(rt|x1:t)) (gray values) with MAP estimates r̂t for

normal data (third subfigure, blue line) and abnormal data (fourth subfigure, red line). Changepoints are depicted as dots.

500, 2500 and 3000 being labeled abnormal. Thus, assuming

normal changepoints to be recurrent is not justified for DS3.

3) Qualitative Evaluation: Figure 4a illustrates locations

of FLAG shapelets and BOCPD changepoints for normal

(blue) and abnormal (red) signal envelopes of DS1. The

FLAG indicator vector assigns a shapelet at window index

300 (Fig. 4a, second plot). The corresponding changepoint for

the abnormal grinding wheel is assigned at index 350 (bottom

plot). The other shapelet locations for DS1 at indices 200 and

700 (Fig. 4a) are found at changepoint locations.

For DS2, anomalies result in an additional changepoint at

index 55. This location is not found discriminative by FLAG,

while other changepoint locations coincide with regions of

interest illustrated by the FLAG indicator vector in Fig. 4b.

Figure 4c depicts shapelet and changepoint locations for

DS3. The FLAG indicator vector assigns shapelets at two

changepoint locations, others are deemed non-discriminative.

These results confirm the assumptions stated in the CPRD

results section V-E1 that changepoint-related features are only

useful for data with discrete, persisting shifts in the change-

point pattern during anomalies (DS1 and DS2, not DS3).

4) Quantitative Evaluation: Table II summarizes quantita-

tive results for classification with FLAG shapelets and run

length primitives (RLPs). Each data set DS1 to DS6 is splitted

into half to create training and test sets. F1 scores of FLAG

(row 2) are compared to run length primitives (RLPs) (rows 3-

6) and wavelet-based features (rows 7-10). We use db4 wavelet

filters and decompose into 8 sub-bands. For each data set,

highest F1 scores are highlighted in blue, lowest in red.

TABLE II: Quantitative comparison of FLAG, RLPs and db4

wavelet features via F1 scores for test data (in %).

DS1 DS2 DS3 DS4 DS5 DS6 Avg.
FLAG 95.5 97.4 66.2 46.1 83.7 96.5 80.9

RLP (BOCPD) 87.6 92.4 41.2 48.7 99.3 89.1 76.4
RLP (recurrent) 84.7 97.0 65.2 20.7 97.8 86.3 75.3
RLP (non-rec.) 72.3 39.8 69.8 45.2 47.6 49.8 54.1

RLP (both) 84.7 92.5 71.6 100.0 99.1 94.0 90.3
Wav mean 70.9 38.3 57.3 36.1 47.8 49.8 50.0
Wav var 95.2 99.3 43.3 48.9 99.6 95.8 80.4
Wav P2P 62.8 94.3 35.5 46.2 66.1 95.8 66.8
All Wav 97.1 99.3 40.0 39.5 98.4 95.8 78.4

Classifying with wavelet variance features (row 8) or all

1301

Authorized licensed use limited to: UB Siegen. Downloaded on July 23,2020 at 18:20:49 UTC from IEEE Xplore.  Restrictions apply. 



wavelet features combined (last row) yields a powerful base-

line for data sets DS1, DS2, DS5 and DS6 and comparable F1

scores to FLAG (row 2). BOCPD run length primitives (row 3)

show a performance inferior to FLAG. Run length primitives

created from recurrent changepoints (row 4) yield comparable

results to BOCPD. Run length primitives for non-recurrent

changepoints (row 5) result in poor F1 scores for all data sets

except DS1, where anomalies come with a persistent abnormal

changepoint pattern (cf. Fig. 4a). Constructing run length

primitives from both recurrent and non-recurrent changepoints

separately (row 6) yields the best results, suggesting that both

missing recurrent changepoints and additional non-recurrent

changepoints hold valuable information for anomaly detection.

In summary, anomaly detection with run length primitives

performs competitive under following assumptions:

1) Stationarity of changepoint patterns during normal states

(as we empirically approximate the recurrent normal

changepoint behavior with a static estimator).

2) Stationary abnormal changepoints: Persistent shift be-

tween normal and abnormal changepoint pattern.

3) Evolving changepoint patterns that are observable

throughout all anomalous signals.

As observable in Fig. 3a and Fig. 3b, the first two assump-

tions are met for DS1 and DS2 but not for DS3. For DS2, not

all signals labeled abnormal (from signal index nr. 202 on)

have an additional, abnormal changepoint (cf. Fig. 3b). Thus,

the third assumption is not met for DS2, which results in poor

F1 scores for non-recurrent run length primitives (cf. Table II).

VI. CONCLUSIONS

The goal of this research is to examine the relevance

of changepoints for machine tool anomaly detection tasks.

Changepoints are estimated with the BOCPD algorithm. In-

formation about changepoint locations enables definition of

run length primitives, which are introduced here as an al-

ternative to shapelets with lower computational effort. Their

competitiveness is verified qualitatively and quantitatively by

comparison with the FLAG shapelet approach [21].

An extension of the BOCPD algorithm is introduced to

distinguish recurrent changepoints (evolving due to regular,

repetitive processing steps) from non-recurrent (i.e., abnormal)

changepoints. Recurrent changepoints allow for a description

of the normal process behavior when behaving stationary. Ad-

ditionally, they can be used for identification of repetitive sig-

nal segments and extraction of comparable feature scores [20].

Non-recurrent changepoints yield additional information about

process anomalies when behaving similarly stationary.

We verify the relevance of changepoint information in ma-

chine tool anomaly detection in a case study involving six real-

world data sets. Qualitative results reveal an overlap between

FLAG shapelet locations and changepoint locations for data

sets with stationary changepoint patterns (e.g., DS1 and DS2).

Quantitative results verify superior classification quality (F1

scores) for run length primitives compared to FLAG shapelets

and wavelet features when extracted separately from recurrent

and non-recurrent changepoints. This confirms the benefit of

changepoint recurrence estimation via CPRD.
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T. Karkkäinen, and J. Hollmén, “Blpa: Bayesian learn-predict-adjust
method for online detection of recurrent changepoints,” in Neural
Networks (IJCNN), 2017 International Joint Conference on, Anchorage,
USA, May 2017, pp. 1916–1923.

[12] R. C. Wilson, M. R. Nassar, and J. I. Gold, “Bayesian online learning of
the hazard rate in change-point problems,” Neural Computation, vol. 22,
pp. 2452–2476, Sep. 2010.

[13] J. Hills, J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall, “Classi-
fication of time series by shapelet transformation,” Data Mining and
Knowledge Discovery, vol. 28, pp. 851–881, Jul. 2014.

[14] J. Grabocka, N. Schilling, M. Wistuba, and L. Schmidt-Thieme, “Lear-
ning time-series shapelets,” in Proc. of the 20th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining KDD
’14, New York, USA, Aug. 2014, pp. 392–401.

[15] R. Teti, K. Jemielniak, G. O’Donnell, and D. Dornfeld, “Advanced
monitoring of machining operations,” CIRP Annals-Manufacturing Tech-
nology, vol. 59, pp. 717–739, Aug. 2010.
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