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ABSTRACT
Our electricity networks highly rely on switchgear to control and
safeguard electrical power infrastructure. It is therefore not sur-
prising that distributed monitoring of switchgear through local
sensors, signal processing and analysis in real-time, has emerged
as a promising research field. Of particular interest are the non-
invasive detection of switching operations, their differentiation
and aging, which can be monitored by tracking acoustic emissions
generated during a switching operation using small microelectrome-
chanical system (MEMS) based sensors. This paper presents a novel
and computationally efficient method that allows on-site feature
selection and online classification of switchgear actions. Process-
and design-specific features can be learned locally on the sensor
system without the need of prior offline training. This avoids the
high effort associated with adapting the model for other use cases
offsite (e.g., analysis, feature selection, implementation). Besides,
it offers the possibility to re-train the model, which may be re-
quired due to changes in the structure of the concerned application
(e.g., replacement of components, ageing or changes in sensor posi-
tion). Furthermore, the method is independent of the application,
thus making it generic to other application areas. We evaluate our
method as well as the MEMS sensors (acoustic and vibration) using
datasets of switchgear measurements to differentiate between dif-
ferent switching operations. We furthermore show that the features
selected by our method can be used to track changes in switching
processes due to aging effects.

CCS CONCEPTS
• Hardware → Smart grid; • Theory of computation → On-
line learning algorithms; •Computingmethodologies→ Fea-
ture selection; • Computer systems organization → Embedded
systems.
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1 INTRODUCTION
Improved power quality, reduction of power outages as well as
higher safety and environmental standards are just a few examples
for the ever growing demand on our electrical power grids [19]. To
meet such requirements, power system transparency is taking on
an increasingly important role in the transformation from classical
to smart grids. With the help of Internet-of-Things sensor units, util-
ity companies not only get the ability to remotely monitor power
flow but also to assess the health condition of their equipment in
much greater detail than was previously possible. Particular critical
systems are the electrical substations used for all voltage conver-
sions throughout the grid as shown in Fig. 1. In most (extra)-high
voltage grids (primary substations), complex monitoring systems
in combination with extensive measurement technology and diag-
nostic procedures are already in use. In contrast, this is not the case
for most transformer substations at the lower voltage levels of the
distribution grid (secondary substations). Here, cost-intensive mon-
itoring solutions are not reasonable, as they are at the same price
level as the examined equipment [3]. Only few low-cost systems,
mainly focusing on transformer monitoring and ambient tempera-
ture, are available on the market [12] [18]. A more holistic approach
for an interconnected, modular condition monitoring system for
substations is presented in [13].

Beside the monitoring of transformers, the supervision of switch-
gear (e.g. circuit breaker, disconnect/ earthing switch) plays a major
role in these substations (Fig. 1). In its basic function, the switch-
gear works like classic switches for switching electrical circuits on
and off, but it is designed for higher voltages where arcs must be
quenched for load or fault currents. By protecting and de-energizing
critical equipment in failure cases, switchgear guarantees a contin-
uous, reliable and resilient power grid. Safe and continuous opera-
tions over decades despite the onset of ageing and wear effects is
therefore essential. While cost-intensive monitoring solutions for
high-voltage switchgear are vast, including the recording of open-
ing and closing times, drive motor current, insulation condition or
electrical parameters [19], usually not even the switching operation
itself is detected on the medium-voltage level [14]. However, this,
in addition to the switching frequency and the switched current,
significantly determines the wear and aging which are the cause
of 42.3 % of major failures [16]. As installed switchgear units nor-
mally contain several load break switches (also called disconnector
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Figure 1: The structure of the electrical grid, with substations for voltage transformation between all voltage levels. Each
substation is protected by switchgear on at least one side as shown for the primary voltage side of a primary substation (top
right). Classically secondary substations (bottom right) are equipped with fuses on the LV side and MV switchgear.

switches) and/or circuit breakers (as shown in Fig. 2 a) for a triple
cubicle MV switchgear unit), it is important to track all activities of
the individual switches to evaluate the overall condition of a unit.
To recognize a switch operation, existing solutions rely on signal
switches at each breaker (Fig. 2 c) to extract the current position of
the shaft or on the monitoring of electrical parameters by checking
if the circuit is opened or closed. Yet, those solutions require a high
amount of installation and cabling effort inside the unit to monitor
the individual switches.

In contrast, we investigate the use of a single sensor system to
monitor the complete switchgear unit. To achieve this, we take ad-
vantage of the fact that switches are equipped with springs within
the gear mechanism. Those are preloaded (e.g., by a drive motor or
manually with the switching crank, Fig. 2 f-g) to ensure safe switch-
ing operations. If the drive is rotated beyond a certain position, the
energy of the springs is released abruptly, which guarantees that
every operation is performed in the same way, independent of the
operational speed of the drive. The released energy of the springs
and the opening/closing of the contacts in the arcing chamber cause
vibrations and acoustic emissions in the switchgear, which can be
perceived as a loud blast. In a first step towards a single sensor sys-
tem, we show that cost-effective microelectromechanical system
(MEMS)-based acoustic and vibration sensors in combination with
intelligent data analysis can be used for basic condition monitoring
tasks such as the detection of switching operations, the differen-
tiation of processes (switching-on and -off) for different breaker
types and the tracking of mechanical ageing effects.

For the use as a retro-fit solution, the system has to be able to
cope with the high diversity of switchgear types and manufactures
installed in the field. For this reason, generalizable data models,
which can be used independently of the switch type and installa-
tion position, are needed for the signal processing. In comparison,
standard models are formed by collecting recorded data and extract-
ing application-relevant features offline (e.g. on computationally
powerful CPUs) for the best possible differentiation of classes in
the feature domain. Afterwards, the design-specific model is imple-
mented on-site e.g. on a gateway or microcontroller. This offline
learning cycle has to be repeated for each type of switchgear, which
leads to a considerable high effort. Therefore, we propose a config-
uration concept for automated online classification of switching
processes for different breaker types without inference of a user.
For the single learning phase, only a few labeled training data are
needed to extract a relatively small number of informative features
for classification using an adapted Silhouette Score. This enables
on-site deployment with limited computing power without offline
training in the back-end. Furthermore, we show that the selected
features can be used for online assessment of the switchgear con-
dition. Besides the use for switchgear process classification, the
proposed method can also be configured for the use in other appli-
cations of the machine condition monitoring domain.

In the following, a short overview of existing monitoring so-
lutions for switchgear will be given, followed by introducing our
proposed method and the evaluation on seven datasets of switch-
gear measurements in a proof-of-concept study.
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Figure 2: Example of sensors installed in a triple cubicle switchgear unit from Driescher Wegberg: (a) Two vibration sensor
systems, (b) a signal switch unit (c) and one microphone (d) as well as the view into the interior structure of two feed-in cable
cubicles and an outgoing transformer cubicle (e) and the switchgear compartment (f) with spring-driven mechanism (g).

2 RELATEDWORK
The development towards a smart electrical grid is leading to a shift
from time-based to condition-based maintenance, driving the pro-
gression of online condition monitoring (CM) methods. This also
applies to switchgear whose condition is classically tested by per-
sonnel who inspect manually on-site (offline) at fixed time intervals.
In recent years, a variety of offline and online CM methods have
evolved, including monitoring of insulation condition, detection of
partial discharge, thermal measurements for hot-spot identification,
supervision of the operating mechanism and tracking of the con-
tact positions [1, 15, 19]. Nevertheless, the main area of research
focuses on vibration and acoustic monitoring for the detection of
mechanical faults which have been reported as the origin of 52.6 %
of major failures [1, 6, 16, 20, 22, 23].

The main difficulty for sensor data analysis follows from the
complexity of the signals. They can be characterized by a damp-
ing system with a trumpet-shaped envelope that is wide in the
frequency domain and very short in the time domain due to the
short switching time. Furthermore, the signals are subject to strong
non-linearity, non-stationarity, distortion by noise and a depen-
dence on the switchgear type [1, 8, 23]. The entire data processing
is further complicated by the fact that the switching operation is
only performed few times a year for maintenance reasons. To dis-
tinguish fault conditions (known and unknown ones) from natural
variations in the signals, two main research directions were investi-
gated: extraction and selection of distinctive features to determine
slight changes between faulty and healthy condition measurements
and appropriate classifications of those states. So far, mainly high-
voltage circuit breakers have been considered [1, 11, 20, 23].

For the feature extraction and selection, especially, frequency-
related features were considered due to the short switching duration

and their potential relation to various failures. Apart from tradi-
tional spectral analysis using Fourier transform [22] methods for
extracting local time-frequency information in better resolution
were investigated. Thereby, the non-stationary and non-linear sig-
nals were decomposed into several non-inferences modes using,
among others, empirical mode or wavelet decomposition, wavelet
packet transform or variational mode decomposition [11, 23]. The
presented methods, however, are among others subject to modal
aliasing, energy losses and adaptability. Moreover, they suffer from
the randomness of the decomposition level, which affects the relia-
bility of the analysis, and most importantly, from the high computa-
tional complexity, which hinders online monitoring [1]. Following
the feature extraction and selection, methods for classification be-
tween healthy and faulty condition were studied, including fuzzy
based methods, back propagation neural networks, support vector
machines, random forest or decision trees [11, 20]. Although these
methods are properly trained to detect defined mechanical faults
(such as for example poor lubrication, spring fatigue, or contact
damage), they are highly dependent on the training set and on the
sensor location, and they lack robustness for unknown faults and
noisy data. They also have been shown to need a long time for
training and have limited generalizability given the diversity of
switchgear types [1]. The high manual effort and expert knowledge
required for adaption of this methods and the necessary precise
sensors with high bandwidth are not justified at MV level. Further-
more, the switching operations are not detected using the acoustic
emission but signal switches. For these reasons, the usability of op-
eration and condition monitoring for MV switchgear using acoustic
and vibration signals is still an open research topic [8, 14].

In the following sections of this paper, the use of cost-effective
MEMS-based sensors as well as a more generalizable classification
method on their data using self-learning algorithms are examined.
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3 APPROACH
The proposed method is designed to simplify the use of the moni-
toring sensor system in the field as much as possible. The basic idea
is to be able to install the system within a short period of time and
then learn to distinguish different switching processes directly on-
site without interference from the user. The proposed algorithm is
summarized in Fig. 3 under the caption "Intelligent Online Feature
Selection & Classification". For better accuracy of process classifi-
cation, it is assumed that a few labeled data can be recorded on-site
at a given sensor position and switchgear type. As for standard
methods, the algorithm is provided with these labeled training data
on the classes (processes/scenarios) to be distinguished in the first
step. In the next step, in contrast to existing methods, the model is
also learned on-site such that the recorded data can be processed
directly. For representing the time series data, extracted features
have to be defined to map the data in the feature space, where the
characteristics of different processes are better distinguishable. The
specification of the implemented features by the user in advance
provides the possibility to incorporate expert as well as physical
knowledge. Furthermore, there are no restrictions on the kind and
number of features. Either standard features from the time and
frequency domains can be used (e.g. [2]) or suitable features can be
extracted using more complicated methods such as decomposition
methods, the use of non-linear kernel functions or autoencoders,
depending on the available computing power installed on-site and
the number of labeled time series data. Packages extracting a high
amount of different features exist in Python (tsfresh [4], 794 ex-
tracted features) and MATLAB (hctsa [7], 7700 extracted features).
Those packages also use highly parallelized feature selection algo-
rithms that are based on statistical hypothesis tests, which require
high computational power and are therefore not suitable for our
use case.

For classification or clustering problems, the generalizability
beyond the training set is a major concern, which is why the signif-
icance of extracted features is of high relevance and the selection
of too many irrelevant features needs to be avoided. Furthermore,
feature selection optimizes the performance of the algorithm by
reducing its complexity as well as the needed computation time,
which in turn enables online or even real-time monitoring for IoT
solutions. Often, a multi-dimensional feature space is created to dis-
tribute the features in space for a better separability. However, with
the increase of dimensions, the number of needed training data also
increases exponentially (curse of dimensionality). This is critical as
only few labeled training data can be provided for practical reasons.
For this reason, a combination of clustering and classification is
used to identify the relevant features that lead to a high informa-
tion gain in the one-dimensional feature space. To achieve this, the
training data labels are compared with the clustering quality, which
is determined using a modified Silhouette analysis. The Silhouette
Score Si = bi−ai

max(ai ,bi ) is a measure on how similar a feature point i
is to points of its own cluster (cohesion) compared to points of other
clusters (separation) [9]. For the similarity, the average intra-cluster
distance ai and inter-cluster distance bi are calculated, defining
the cluster compactness. Traditionally, the Silhouette Score is one
of the most popular cluster validity indices used to determine the
optimal number of clusters in a very effective way e.g. for cluster

Figure 3: Compared to standard methods, our approach en-
ables the deployment of amonitoring system in one appoint-
ment by first installing the sensors, followed by recording
few labeled training data, which are directly processed to se-
lect appropriate features on-site for classification.

algorithms like k-means [5, 17]. Here, we adapt the method to find
features that classify our labeled data most accurately. The only dis-
advantage of the Silhouette Score is the high computational effort
for calculating the pairwise distances ai and bi between all points,
which scales with the size of training data (number of features
and number of samples). Our adaption instead calculates a feature
quality score (f c) out of the distance between the features and their
own cluster center ci and the nearest cluster center ck (similar to
[21]) as follows:

f c =
1
N

N∑
i=1

dik − dii
max(dik ,dii )

, (1)

whereby N is the number of different clusters, dii is the average
distance of feature values of one cluster to its own cluster center
ci and dik is the average distance of those features to the nearest
cluster center ck (Fig. 4). A good clustering is given for a feature
quality score near 1, while a score of -1 corresponds to a bad cluster-
ing. Wang et al. showed that the simplified Silhouette Score leads
to similar results as the original one [21]. In comparison to other
methods, the mapping into a joint-feature space is not necessary,
which leads to an easier interpretability, lower computational costs,
and an increased robustness against overfitting.

In the inference phase, the data are continuously collected and
then automatically analysed. If a switch operation is detected, the
selected features are calculated for the measurement. Based on the
distance of the features to the center a model based classification
probability is calculated, as shown in Fig. 4, to evaluate the detected
process. Point i is assigned to scenario/process 1 with a probability
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Figure 4: Example of three scaled features and illustration of
the distances for exemplary point used for the feature qual-
ity score calculation.

of 100 %, and point j correspondingly to scenario 2. Point k , laying
between the clusters, is assigned to scenario 1 with a probability of
P = 1 − d11

d with d being the distance between the centers.

4 PROOF-OF-CONCEPT-STUDY
The benefits of our approach are studied in this section for the
differentiation of switching processes on seven datasets that were
recorded for a medium voltage (MV) switchgear unit.

4.1 System Setup and Data
This study’s data were recorded at encapsulated (SF6- and vacuum-
isolated) medium-voltage switchgear, which is manufactured ac-
cording to a modular principle from individual metal-encapsulated
cubicles (e.g. feed-in cable and transformer outgoing feeder cubi-
cles) consisting of circuit breakers, fuses and switches as shown
in Fig. 2. Load-break switches are used to (dis)connect single as-
sets or entire units at rated current, while circuit breakers can also
switch in a disturbed case (e.g. at short circuit). In contrast, earthing
switches are used to ground the assets. Measurements were taken
on all three switch types to show that the method can be used to
distinguish switching processes and thus track the number of oper-
ations. For the measurements, two different sensor systems were
tested on their suitability for non-invasive monitoring. The first
one is a MEMS-based stereo microphone (MBSM) with a sampling
frequency of 48 kHz, an SNR of 66 dB, a sensitivity tolerance of
-38 dB ± 1 dB and a flat frequency response from 50 Hz to 14 kHz,
which is integrated in an MM5 housing with a USB connection
(Fig. 2 d). The second system is a MEMS vibration sensor system
(VSS) consisting of two accelerometers, which are packaged in an
industrial suited housing together with a microcontroller for possi-
ble pre-processing tasks (Fig. 2 b). The two accelerometers are used
to cover a high bandwidth as well as a good resolution in the low
frequency range. The first accelerometer (A1) has a single degree
of freedom, a sampling rate of 62.5 kHz, a measurement range of
several 10s of g and a sensitivity of few LSB/g. The second one (A2)
is a three-axis sensor for consumer applications with a sampling
rate of 2 kHz, a resolution of 0.98 mg, a sensitivity of 1024 LSB/g,
a programmable measurement range between 2-16 g and a non-
linearity of ± 0.5 %. The microphone was installed in a distance of
approximately two meters behind the switchgear unit, while two of
the vibration sensor systems were tested on two different positions

for evaluating the mounting position influence. One vibration sen-
sor (VSS1) was screwed inside the cubicle next to the spring-drive
mechanism, whereas the second system (VSS2) was mounted on
top of the corresponding cubicle (see Fig. 2 b, d). All sensor systems
feature integrated A/D conversion, amplification and correction
factors, thus providing processed digital values. For this study, all
three systems were connected via USB to an industrial Raspberry
Pi which controls the data recording using a trigger circuit, saves
the data on a USB device or transfers it via LTE for remote moni-
toring. The data recording was triggered by limit switches, which
were turned after each opening and closing operation (Fig. 2 c),
whereby the switching operations were performed automatically
with the help of a pneumatic switching device (Fig. 2 a). Details of
the recorded datasets DS1 to DS7 are listed in Table 1. As the limit
switches tend to bounce, the number of measurement files in one
dataset is not consistent over all sensors.

4.2 Actuation Detection
Compared to literature, which described the switching duration for
circuit breakers in the range of 10s milliseconds [8] and thus did
not consider features in the time domain, the measured signals at

Table 1: Datasets and parameter variations per sensor (vibra-
tion sensors VSS1 and VSS2, stereo microphone MBSM)

Dataset Switchgear type Sensor Records

DS1
load break switch in
cable cubicle

VSS1 585

VSS2 948

MBSM 1118

DS2
load break switch in
cable cubicle

VSS1 306

VSS2 27

MBSM 279

DS3
load break switch in
transformer cubicle

VSS1 3295

VSS2 3299

MBSM 3187

DS4
vacuum circuit
breaker

VSS1 3830

VSS2 533

MBSM 3831

DS5
load break switch in
cable cubicle

VSS1 4000

VSS2 4000

MBSM 4000

DS6
earthing switch in
cable cubicle

VSS1 3750

VSS2 3823

MBSM 3942

DS7
load break switch
with SEA-drive in
transformer cubicle

VSS1 2170

VSS2 4351

MBSM 4163
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the MV switchgear have an average switching duration of several
100s milliseconds and last up to one second with fully recorded
decay. An example can be found in Fig. 5. If measurements are
taken directly at the switchgear or in close proximity, a signal-
to-noise ratio (SNR) of around 20 dB is achieved due to the high
released energy. Therefore, the switching operation can be very
well distinguished from the background.

To detect switchgear operations for further classification of dif-
ferent processes, a threshold recognition is implemented. In order to
reduce the amount of data and increase the robustness against out-
liers, the raw data are compressed by computing the sum of power
spectral density (PSD) estimates in intervals of equal lengths (Fig. 6).
From the average and standard deviation of the PSD values of train-
ing data, the detection threshold is calculated. When switching a
circuit breaker as in Fig. 6, a spring is pre-tensioned to guarantee
that the switch-off process can be carried out safely. When this
spring snaps into place, a second peak is detected. To ensure that
only one process is identified, new start points within the average
switching time of the training data are discarded. For DS1-DS7, this
leads to a detection accuracy of > 99% for all sensors, whereby the

Figure 5: Example of a switching-on and -off process as
recorded by the MEMS microphone (MSBS, top timeseries
plot) and its corresponding spectrogram (below).

Figure 6: Vibration signal from DS3 (above) and its power
spectral density computed over intervals of 33 ms (below).
A switchgear operation is detected when the threshold on
the power spectral density is exceeded.

method is robust against usual background noises (e.g. speaking,
loud coughing) that were captured during the measurements.

4.3 Online Feature Selection and Classification
In addition to the basic detection, the determination of the num-
ber and frequency of switching is of great interest. When having
more than one switch installed, the simple counting of detected
operations is no longer sufficient and a signal-based differentiation
of processes (e.g. on/off, switchgear types) becomes necessary. For
the first step, the sensor is installed in its final position and the
different processes that need to be classified are executed several
times. For a realistic practicability, five recurrences for each process
have been selected. It is assumed that, as the switching operation
through the spring mechanism is always carried out in the same
way, five recurrences are sufficient to distinguish discriminative
features. Differentiable processes can be the switching of different
breaker types, new and old switchgear, as well as switching-on and
-off, which is the focus here. For this use case, the labeling of the
training data is done automatically by first detecting the actuations
with the above algorithm and then alternately labeling it with "on"
and "off" (Fig. 6). In a second step, the training data are low pass
filtered with different cut-off frequencies as especially during the
decay process a lot of information lies in the low-frequency range
(<10 kHz [10], Fig. 5). Feature calculation is executed for each of
the filtered signals. In this study, 21 features listed in Table 2 were
extracted and afterwards rescaled (e.g. z-score) for data normaliza-
tion. Thereby, as mentioned above, also features in the time domain
were considered. For the study, the best five discriminative features
were selected with the proposed method and used for the inference.

4.4 Results and Discussion
The average accuracy per sensor over all selected features and
axes is shown in Table 3 (Selected features). For the differentiation
between switching-on and -off, the microphone leads to the best
results over all datasets with an accuracy of 93.4 %. Care must be
taken not to place the sensors too close to the unit under test to
ensure that the sensors do not exceed their defined measuring range
and begin to clip. This also leads to artifacts in the measurements
which can be seen in the results of the two vibration sensor systems.
The outside installed system VSS2 leads to a better detection with
an average accuracy of 89.3 % compared to the sensors installed
near the switchgear drive with 85 %. This shows that a non-invasive
wired power supply is possible without modifying the unit. As the

Table 2: Time and Frequency Domain Features

Domain Features

Frequency & Time mean, variance, skewness, kurtosis,
power, flatness

Time root mean square, absolute mean, max-
imum, minimum, dynamic range, crest
factor

Frequency spectral centroid, median frequency,
dominant frequency
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measurements show a damped oscillation frequency, features from
the frequency domain are primarily selected. The most selected
feature is the dominant frequency with extracted values mostly
located below 1 kHz. This supports the approach of filtering the
signal before extracting the features and also explains why the
accelerometers A2 with a greater resolution in the low frequency
range perform better (90.6 %) compared to A1 (87.9 %) in VSS2. In
contrast to the selected features, the axis orientation of A2 plays a
minor role for the accuracy. Trigger problems and therefore incon-
sistent truncated measurements result in a lower accuracy in DS2.
To reduce the dependency on individual features for the scenario
estimation, a majority vote of the result from the five extracted
features is implemented. Three different versions (equally weighted,
weighted with feature quality score, weighted with scenario esti-
mation probability) are tested, which all lead to a similar accuracy
(0.5% deviation). Table 3 (Majority vote) shows the equally weighted
feature results, which, in most cases, improves the overall accuracy
compared to the first column. A further increase in the number of
features (up to 15) for the vote was tested for 2000 operations of DS5,
increasing only the accuracy of VSS1 A2 and VSS2 A1 by 2%-5% per
additional two features. An increase of training measurement (up
to 20) did not improve the overall accuracy significantly. Learned
features from DS1 were also tested on the inference data of DS2,
which led to worse results (3 % overall accuracy loss). This shows
that even features learned for the same switch type with similar
sensor location cannot easily be transferred since the signal charac-
teristics differ if the setup changes. This results in the the necessity
of our approach to give an opportunity for on-site learning.

4.5 Trend Detection for Ageing Effects
For DS5, the load break switch was switched beyond its specified
end of life. As the contacts and spring deteriorate, the characteristics
of the data distribution change over time, resulting in decreasing
detection accuracy. However, this property can be exploited to
map aging processes with the help of the selected features. At the
end of the measurements of DS1, there was a failure of the spring-
based switching mechanism of the load switch. Figure 7 shows the
change in one of the selected features for VSS2 A2. As data from
broken switches are not always available, the above method cannot
always be used to differentiate between new and used switchgear to
track changes. An alternative is the change tracking of the already
selected features by continuously updating the calculated cluster
centers to track their development. The update is done with the
exponential weighted moving average (EWMA)

ci j = α ∗ fi j + (1 − α) ∗ ci j−1, (2)

whereby ci j describes the center of a scenario i at time j, fi j is
the corresponding feature and α ∈ [0, 1] is a weighting factor to
determine how much influence the new feature fi j has on the old
center ci j−1 . In our implementation, only features in the µ ± 3σ -
range of the center were considered for the calculation and α = 0.05
was used. This approach leads to an improvement of the accuracy
as shown in Updated centers of Table 3. The change between the
current value of the center and the beginning one is a good indicator
for the aging of switchgear. By using defined alarm thresholds (e.g.,
20 % deviation from original center), an alarm or a relearning can
be triggered in case of a major change (Fig. 7).

Table 3: Obtained accuracy figures for the Online Feature Se-
lection per sensor modality and across all datasets DS1-DS7

Accuracy in [%]

Dataset Sensor Selected
features

Majority
vote

Updated
centers

DS1

VSS1 A1 70.8 75.5 91.4

VSS1 A2 81.7 89.1 96.9

VSS2 A1 85.9 85.9 85.9

VSS2 A2 89.0 95.3 99.8

MBSM 98.7 98.9 99.1

DS2

VSS1 A1 57.1 57.1 57.1

VSS1 A2 66.0 68.4 65.7

VSS2 A1 78.6 78.6 78.6

VSS2 A2 76.7 85.4 85.4

MBSM 89.0 93.6 94.4

DS3

VSS1 A1 98.5 98.5 98.6

VSS1 A2 99.0 99.3 99.3

VSS2 A1 100 100 99.9

VSS2 A2 96.1 97.6 97.6

MBSM 94.8 94.8 99.7

DS4

VSS1 A1 93.8 95.2 100

VSS1 A2 91.6 98.0 100

VSS2 A1 97.8 97.9 99.8

VSS2 A2 97.8 98.1 98.1

MBSM 97.1 98.9 98.8

DS5

VSS1 A1 76.0 79.7 96.8

VSS1 A2 60.8 58.5 64.3

VSS2 A1 54.8 57.2 59.0

VSS2 A2 78.8 82.0 100

MBSM 74.0 72.1 97.3

DS6

VSS1 A1 100 100 100

VSS1 A2 99.2 100 100

VSS2 A1 98.1 99.4 99.6

VSS2 A2 99.9 100 100

MBSM 100 100 100

DS7

VSS1 A1 95.7 99.9 100

VSS1 A2 99.3 99.9 100

VSS2 A1 99.9 100 100

VSS2 A2 96.2 98.2 99.9

MBSM 99.9 99.9 100
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Figure 7: Classification of VSS2 A2 vibration measurements
from dataset DS1 using static vs. adaptive centers. Updated
centers allow a better accuracy over time and can track
changes. An alarm is triggered once one of the thresholds
is exceeded.

5 CONCLUSION AND FUTUREWORK
In this paper, we present an approach that allows accurate moni-
toring of different processes at medium-voltage switchgear units,
which in turn enables a distributed and more fine-grained analysis
of our electrical grid. The suitability of MEMS-based acoustic and
vibration sensors is evaluated and best practices for the installation
are given. The proposed system can thereby be used as an additional
module for non-invasive, cost-effective switchgear supervision in a
modular secondary substation monitoring system as described in
[13]. Furthermore, an integration of the microphone in a central
node addressing further use cases such as ambient noise monitoring
for intrusion detection is conceivable. Additionally, a configuration
for online classification based on on-site ranked feature selection is
evaluated. This approach eliminates the need for time-consuming
application-specific offline training. We show that, with this ap-
proach, switchgear actuations (that are automatically detected via
a threshold) can be classified reliably for different scenarios. Fur-
thermore, the selected features can be used to detect trends in the
data for switchgear aging. An update of the cluster centers and a
majority vote further improve the classification quality by 6.8 %
on average in accuracy. Further investigations include the evalu-
ation of using only one sensor system for monitoring a complete
switchgear unit by extending the proposed approach to multi-class
classification and evaluating trade-offs of our approach compared
to offline methods e.g. in terms of computational power.

ACKNOWLEDGMENTS
This research emerged as part of the project MAKSIM which is
funded by the Federal Ministry for Economic Affairs and Energy
under the funding code 0350035B. The authors are responsible for
the content of this publication. We wish to thank Mr. Bernards, Mr.
Goertz and Mr. Kohnen for unprecedented access to switchgears
that have led to the datasets used in this paper’s study.

REFERENCES
[1] Ali Asghar Razi-Kazemi and Kaveh Niayesh. 2021. Condition Monitoring of High

Voltage Circuit Breakers: Past to Future. IEEE Transactions on Power Delivery 36,
2 (April 2021), 740–750. https://doi.org/10.1109/tpwrd.2020.2991234

[2] Marília Barandas, Duarte Folgado, Letícia Fernandes, Sara Santos, Mariana Abreu,
et al. 2020. TSFEL: Time Series Feature Extraction Library. SoftwareX 11 (Jan.
2020), 100456. https://doi.org/10.1016/j.softx.2020.100456

[3] Dominik Beerboom. 2017. Objektive Zustandsbewertung von Mittelspannungsnet-
zen als Grundlage der Asset-Optimierung. Ph.D. Dissertation. Bergische Univer-
sität Wuppertal. https://books.google.de/books?id=zZs9swEACAAJ

[4] Maximilian Christ, Nils Braun, Julius Neuffer, and Andreas W Kempa-Liehr. 2018.
Time series feature extraction on basis of scalable hypothesis tests (tsfresh–a
python package). Neurocomputing 307 (2018), 72–77.

[5] Duy-Tai Dinh, Tsutomu Fujinami, and Van-Nam Huynh. 2019. Estimating the
Optimal Number of Clusters in Categorical Data Clustering by Silhouette Coeffi-
cient. In Knowledge and Systems Sciences. Springer Singapore, Singapore, 1–17.
https://doi.org/10.1007/978-981-15-1209-4_1

[6] Ying Feng and Jianwen Wu. 2020. Vibration Feature Analysis for Gas-Insulated
Switchgear Mechanical Fault Detection under Varying Current. Applied Sciences
10, 3 (Feb. 2020), 944. https://doi.org/10.3390/app10030944

[7] Ben D. Fulcher and Nick S. Jones. 2017. hctsa : A Computational Framework
for Automated Time-Series Phenotyping Using Massive Feature Extraction. Cell
Systems 5, 5 (Nov. 2017), 527–531.e3. https://doi.org/10.1016/j.cels.2017.10.001

[8] Martin W. Hoffmann, Stephan Wildermuth, Ralf Gitzel, Aydin Boyaci, Jörg Geb-
hardt, et al. 2020. Integration of Novel Sensors and Machine Learning for Pre-
dictive Maintenance in Medium Voltage Switchgear to Enable the Energy and
Mobility Revolutions. Sensors 20, 7 (April 2020), 2099. https://doi.org/10.3390/
s20072099

[9] Leonard Kaufman and Peter J. Rousseeuw (Eds.). 1990. Finding Groups in Data.
John Wiley & Sons, Inc. https://doi.org/10.1002/9780470316801

[10] Dennis S. Lee, Brian Lithgow, and R. E. Morrison. 2003. New fault diagnosis of
circuit breakers. IEEE Transactions on Power Delivery 18, 2 (April 2003), 454–459.
https://doi.org/10.1109/TPWRD.2003.809615

[11] Suliang Ma, Mingxuan Chen, Jianwen Wu, Yuhao Wang, Bowen Jia, and Yuan
Jiang. 2019. High-Voltage Circuit Breaker Fault Diagnosis Using a Hybrid Feature
Transformation Approach Based on Random Forest and Stacked Autoencoder.
IEEE Transactions on Industrial Electronics 66, 12 (Dec. 2019), 9777–9788. https:
//doi.org/10.1109/tie.2018.2879308

[12] A. Avinash Nelson, Gajanan C. Jaiswal, Makarand S. Ballal, and D. R. Tutakne.
2014. Remote condition monitoring system for distribution transformer. In 2014
Eighteenth National Power Systems Conference (NPSC). 1–5. https://doi.org/10.
1109/NPSC.2014.7103848

[13] Christina Nicolaou, Ahmad Mansour, Philipp Jung, Max Schellenberg, Kristof
Van Laerhoven, et al. 2021. Intelligent, sensor-based condition monitoring of
transformer stations in the distribution network. In 2021 Smart Systems Integration
(SSI). IEEE. https://doi.org/10.1109/ssi52265.2021.9466985

[14] Christina Nicolaou, Ahmad Mansour, and Kristof Van Laerhoven. 2021. On-site
Online Feature Selection for Classification of Switchgear Actuations. (May 2021).
arXiv:2105.13639 [eess.SY]

[15] Kevin Perdon, Massimo Scarpellini, Stefano Magoni, and Luca Cavalli. 2017.
Modular online monitoring system to allow condition-based maintenance for
medium voltage switchgear. CIRED - Open Access Proceedings Journal 2017, 1
(Oct. 2017), 346–349. https://doi.org/10.1049/oap-cired.2017.0415

[16] M. Runde, C. E. Sölver, et al. 2012. Final report of the 2004-2007 international
enquiry on reliability of high voltage equipment. CIGRE Technical Brochure 509,
Paris.

[17] Ketan Rajshekhar Shahapure andCharles Nicholas. 2020. Cluster Quality Analysis
Using Silhouette Score. In 2020 IEEE 7th International Conference on Data Science
and Advanced Analytics (DSAA). IEEE. https://doi.org/10.1109/dsaa49011.2020.
00096

[18] Stadtwerke München. 2019. Smarte Ortsnetzstationen. Technical Report.
[19] Nenad Uzelac, Christian Heinrich, Ryszard Pater, Jack Arnold, Daniel

Eichhoff, et al. 2018. Non-intrusive methods for condition assessment of
distribution and transmission switchgear. Technical Report 737. 215 pages.
https://e-cigre.org/publication/737-non-intrusive-methods-for-condition-
assessment-of-distribution-and-transmission-switchgear QC 20181129.

[20] ShutingWan and Lei Chen. 2019. Fault Diagnosis of High-Voltage Circuit Breakers
Using Mechanism Action Time and Hybrid Classifier. IEEE Access 7 (2019), 85146–
85157. https://doi.org/10.1109/access.2019.2926100

[21] Fei Wang, Hector-Hugo Franco-Penya, John D. Kelleher, John Pugh, and Robert
Ross. 2017. An Analysis of the Application of Simplified Silhouette to the Eval-
uation of k-means Clustering Validity. In Machine Learning and Data Min-
ing in Pattern Recognition. Springer International Publishing, 291–305. https:
//doi.org/10.1007/978-3-319-62416-7_21

[22] Wei Wang, Hong-jie Shi, Lin Yan, Tao Jin, Da-wei Wang, et al. 2019. Online
monitoring of high-voltage switchgear installation. The Journal of Engineering
2019, 16 (March 2019), 1238–1240. https://doi.org/10.1049/joe.2018.8848

[23] Qiuyu Yang, Jiangjun Ruan, Zhijian Zhuang, Daochun Huang, and Zhibin Qiu.
2019. A New Vibration Analysis Approach for Detecting Mechanical Anomalies
on Power Circuit Breakers. IEEE Access 7 (2019), 14070–14080. https://doi.org/
10.1109/ACCESS.2019.2893922

8

https://doi.org/10.1109/tpwrd.2020.2991234
https://doi.org/10.1016/j.softx.2020.100456
https://books.google.de/books?id=zZs9swEACAAJ
https://doi.org/10.1007/978-981-15-1209-4_1
https://doi.org/10.3390/app10030944
https://doi.org/10.1016/j.cels.2017.10.001
https://doi.org/10.3390/s20072099
https://doi.org/10.3390/s20072099
https://doi.org/10.1002/9780470316801
https://doi.org/10.1109/TPWRD.2003.809615
https://doi.org/10.1109/tie.2018.2879308
https://doi.org/10.1109/tie.2018.2879308
https://doi.org/10.1109/NPSC.2014.7103848
https://doi.org/10.1109/NPSC.2014.7103848
https://doi.org/10.1109/ssi52265.2021.9466985
https://arxiv.org/abs/2105.13639
https://doi.org/10.1049/oap-cired.2017.0415
https://doi.org/10.1109/dsaa49011.2020.00096
https://doi.org/10.1109/dsaa49011.2020.00096
https://e-cigre.org/publication/737-non-intrusive-methods-for-condition-assessment-of-distribution-and-transmission-switchgear
https://e-cigre.org/publication/737-non-intrusive-methods-for-condition-assessment-of-distribution-and-transmission-switchgear
https://doi.org/10.1109/access.2019.2926100
https://doi.org/10.1007/978-3-319-62416-7_21
https://doi.org/10.1007/978-3-319-62416-7_21
https://doi.org/10.1049/joe.2018.8848
https://doi.org/10.1109/ACCESS.2019.2893922
https://doi.org/10.1109/ACCESS.2019.2893922

	Abstract
	1 Introduction
	2 Related Work
	3 Approach
	4 Proof-of-Concept-Study
	4.1 System Setup and Data
	4.2 Actuation Detection
	4.3 Online Feature Selection and Classification
	4.4 Results and Discussion
	4.5 Trend Detection for Ageing Effects

	5 Conclusion and Future Work
	Acknowledgments
	References

