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ABSTRACT
Interpreting datasets containing inertial data (acceleration, rate-
of-turn, magnetic flux) requires a description of the datasets
itself. Often this description is unstructured, stored as a con-
vention or simply not available anymore. In this note, we
argue that each modality exhibits particular statistical prop-
erties, which allows to reconstruct it solely from the sensor’s
data. To investigate this, tri-axial inertial sensor data from five
publicly available datasets were analysed. Three statistical
properties: mode, kurtosis, and number of modes are shown
to be sufficient for classification - assuming the sampling rate
and sample format are known, and that both acceleration and
magnetometer data is present. While those assumption hold,
98% of all 1003 data points were correctly classified.
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INTRODUCTION
To correctly interpret sensor data, reliable information about
the data itself is required: sample (and frame) format, record-
ing rate, number of axis, position at the observed body and sen-
sor modality need to be known. This meta-information is often
stored along-side the data itself, either in (semi-)structured
external file, as a header of the data or as a well-known con-
vention. Misinterpretation, resulting from missing or incorrect
meta-data, has a strong influence on a subsequent applica-
tion’s performance. If such meta-data is not in a machine-
interpretable format, slow and cumbersome recovery by a
human expert becomes necessary. Here, we investigate to
which extent the sensor modality can be recovered from invari-
ant statistical properties of the sensor data itself. We assume
that sample format, number of axis, and sample rate are known
beforehand, but scale, and other calibration factors are not, and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISWC ’17, September 11–15, 2017, Maui, HI, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-5188-1/17/09. . . $15.00

DOI: https://doi.org/10.1145/3123021.3123048

show that a sensor’s modality can be (automatically) verified,
or its meta-data rendered redundant.

Providing structured meta-data enables datasets to be picked
by search engines [4]. In the absence or partial availability
of this data, an automatic identification of sensor modality
provides a basic starting point that otherwise would require
manual inspection by an expert. Webcrawlers could refrain
from correctly specified meta-data. Opportunistic sensing [7],
i.e. situations where the sensor type is not known beforehand,
would be another application area. While proper data cura-
tion practises could alleviate these situations, and are arguably
more straightforward, an error in such manually defined data
is often found much later. Manually reconstructing meta-data
is then hard to scale to large data collections, as inspection by
a human expert is required. A second system, which identifies
modality from data directly, could at least provide additional
safety checks. Such kind of quality control allows to (auto-
matically) check if datasets were correctly documented or if
there might be errors in the data collection, for example when
uploading into a public dataset repository.

Activity Recognition applications are build with assumptions
about the data retrieved from wearable inertial sensors. Proper-
ties, like placement variations or body locations are assumed,
even though they directly influence the recognition perfor-
mance. Kunze et.al. [6] have shown such influence, and pro-
vide several techniques to mitigate those effects. Namely,
using location independent features, adding location to the
classification task or estimating location from long-running
recordings [6]. Similarly to the last option, we look at the
properties of different sensor modalities over longer time peri-
ods to extract the sensor modality. Whether sensor data arose
from an accelerometer, gyroscope or a magnetometer is usu-
ally stored as non-standardized meta-data, but also strongly
influences the recognition performance if incorrect. Hammerla
et.al. [2] introduced the empirical cumulative distribution func-
tion (ECDF) as a mean to capture the statistical properties of
acceleration data, while also serving as a feature reduction
method. Inspired by this, we characterize invariant statistical
features that capture the properties of the inertial sensor modal-
ity. A system to correlate known datastreams to unknown ones
and subsequently propagate their meta-data is described in [3].
In contrast our proposal does not require prior knowledge in
the form of known sensor data, i.e. we present a ruleset that
can be readily applied. However, our proposal is limited to
inertial sensor data.
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Figure 1. Example histogram of three inertial data distributions of a
CMU Kitchen dataset. The concentration of the gyroscope data around
zero, as well as the concentration of the acceleration data around its
mean, and the larger number of modes for magnetometer data is clearly
visible. Identified modes on the distribution are highlighted.

DATASETS
Community provided datasets which included all three iner-
tial sensor modalities, optionally mounted at different body
positions were selected. These were converted into a common
data format [11] to simplify their usage:

CMU Kitchen [8] contains inertial data of multiple body lo-
cations, including arms, legs and the back. Even though two
inertial capture systems were recorded, only the wireless
one, recording at 125Hz, was used. To balance with the
other datasets, only a subset of 3h and 26 participants was
extracted.

ICS Forth ADL [5] contains motion data from the thigh, an-
kle, torso and wrists. The measurement was taken at 50Hz.
15 participants were recorded for a total of 4.5h executing
activities of daily living.

Pamap2 [9] contains motion data of 8 participants executing
activities of daily living at the hand, chest and ankles. In
total 8h were recorded. Inertial data was recorded at 100Hz.
Two acceleration (at different scales), one magnetometer
and a gyroscope stream were used.

Opportunity [10] contains a whole-body inertial motion
recording of daily living activities. A subset of 4 partic-
ipants (with video recordings) contributed 15 data points
each. In total 8h of data recorded at 30Hz was investigated.

mHealthDroid [1] recorded 12 activities of daily living.
Shimmer nodes sampled at 100Hz provided the inertial
data used in this paper. In total 6.5h were analyzed.

PRE-PROCESSING
Each of the sensors differ in various aspects, which requires
a few transformations prior to sensor identifications. In order
to simplify the overall analysis, only the magnitude of sensor
readings is used instead of its vector form. This is achieved
by applying the L2-norm to each sensor reading, which also

renders all subsequent calculations orientation-independent.
Since sensor streams might be scaled differently, e.g. the two
acceleration streams in the pamap dataset were recorded with
6g and 16g range, standardization is required. Dividing by
the mean, i.e. standardizing the scale allows recordings to
be compared. Additionally data was lowpass-filtered with a
cutoff frequency of 2Hz. With the final assumption that the
sensor is most commonly at rest on the body, we can now look
at the properties of the transformed sensor streams, which we
denote as d.

GYROSCOPE
When the human body is at rest, no rotation is measurable. The
rate-of-turn of a limb, measured by the gyroscope, is therefore
most commonly near zero. This fact can be used to identify
this sensor by the following rule:

mode(d)≈ 0⇔ gyr (1)

Expressed differently, if the most common magnitude (mode)
of sensor data is near zero, the sensor is a gyroscope and vice
versa. This, however, only holds if the gyroscope data was
baseline corrected.

ACCELEROMETER
Due to being at rest, the accelerometer’s mode of magnitude
corresponds to the strength of earth’s gravitational field. Desig-
nating the field strength with g = 9.81ms−1, we can formulate
mode(dacc)≈ a∗g, where mode(dacc) is the most commonly
measured value, and a an unknown scale factor applied to
the data. If a would be known, accelerometer data could be
readily identified by comparisons to earth’s gravitation. How-
ever, since data was lowpass filtered, the mean magnitude of
acceleration corresponds to g as well, i.e. d̃acc ≈ a∗g. Due to
standardization, we can formulate a rule for acceleration:

acc⇒ mode(d)≈ 1 (2)

Applying this rule to the scatter depicted in Figure 2 reveals
why this is only a necessary condition; magnetometer data also
fulfills this condition. A sufficient condition can be formulated
for a subset of the overall accelerometer data, when including
the kurtosis:

acc⇔ mode(a)≈ 1 and Kurt(d)> α (3)

Standardization is crucial for this condition, and relies on the
assumption that the sensor is constantly accelerated by earth’s
gravitation. Other accelerations, due to limb movement for
example, are only transient. Datasets which mostly contain
strong movements, e.g. running or stirring as exemplary activ-
ities from the analysed data, will likely break this assumption.
This is however tested with the mHealth, parts of the Oppor-
tunity and the Pamap dataset, which all contain sequences of
strong, continuous motion.

MAGNETOMETER
Figure 2 shows that some magnetometer readings exhibit a
mode and kurtosis that is indistinguishable from accelerometer
data. However, fluctuations in the measured magnetic field
are more distinct than fluctuations of the gravity field. The
respective distribution therefore is not uni- but multi-modal.



Figure 2. Scatter plots of two possible feature sets for sensor modality detection. One feature is the mode of the histogram (512 equal-sized bins), i.e. the
most common value. The second feature is either the kurtosis of the data, or the difference between the mean number of modes at the same limb and
number of modes of one sensor stream. The left hand side shows that not all cases can be identified with mode and kurtosis only. The mode count
difference provides a better indication, with the necessity to assume that both a magnetometer and accelerometer stream is present. Decision thresholds
are shown as highlighted layers.

This means there are multiple peaks, while the accelerometer
distribution is rather "smooth" (cf. Fig. 1). A mode larger
than the mean (or 1 in the standardized dataset), and a smaller
kurtosis can indicate this:

mag⇐ Kurt(d)< β and mode(d)≥ γ (4)

Whether such strong fluctuations are contained in the dataset
depends on the experiment’s condition. By proper choice of β

a subset of magnetometer data can be sufficiently identified.
The smaller kurtosis can be explained due to the fact that
magnetometer is often further spread out, and does not exhibit
a strong concentration point. In contrast, acceleration data has
a strong concentration and its kurtosis is higher.

ACCELEROMETER VS. MAGNETOMETER
The question remains whether sensor streams, which fulfil
none of the necessary conditions (3) nor (4) can still be identi-
fied. More directly, when it is not possible to decide between
acceleration or magnetic flux based on kurtosis and mode
alone. One observation that can be made about these cases,
as well as the already identifiable cases, is that the number
of modes for magnetometer is larger than the ones for accel-
eration data. Estimation of number of modes is achieved by
adequately parameterized peak detection on the histogram. For
a given stream, we designate the number of modes with p, as a
shorthand for the number of peaks. However, streams have to
be compared pair-wise, i.e. magnetometer and accelerometer
must have observed the same motion. Let p̃ designate the
mean number of modes of correlated sensor streams, then we
can formulate the following condition:

d⇔


acc, if p̃− p > .5
mag, if p̃− p <−.5
unknown, otherwise

(5)

Combined with condition (1) this allows to identify all sensor
modalities, iff a correlated magnetometer and acceleration
stream is to be distinguished.

IDENTIFICATION RULESET
When only employing the sufficient conditions (3) and (4),
we call this the partial ruleset. Together with the pair-wise
condition (5), we can form a full ruleset:

d⇔



gyr, if m < .5
acc, else if k ≥ 42 and .95 < m≤ 1.05
mag, else if k < 4.3 and .97 < m
acc, else if p̃− p > .5
mag, else if p̃− p <−.5
unknown, otherwise

(6)

where m = mode(d) designates the mode of the data, k =
Kurt(d) its kurtosis, p the total number of modes and p̃ the
mean number of peaks of correlated data streams contained in
one dataset.

Prior to applying above condition the data needs to be lowpass
filtered, to exclude all frequencies above 2Hz. To reduce
scaling effects, a standardization, by dividing by the mean
of each stream was applied. The mode is determined from a
histogram of 512 equal-sized bins, ranging from 0-2. Peak
detection parameters were set to a minimum peak height of
.01∗m, minimum distance of 5bins and a minimum neighbor
difference of .008∗m. These constants, as well as the decision
thresholds in (6) were empirically determined.

RESULTS AND LIMITATIONS
In total 1003 streams with durations ranging from 7min to
1h were analyzed. All three inertial sensor modalities are
included, mostly positioned at the lower arm (61%), the upper
body (20%) and the legs (19%). Data is scaled differently for
each included dataset, showing that the proposed ruleset is
independent of particular scale. Similarly, the sampling rates
for each dataset differ. The full ruleset allows to identify 98%



Table 1. Confusion matrices for sensor modality identification with full
(left-hand) and partial (right-hand) ruleset. The full ruleset fails to iden-
tify 2% of the analysed streams, but correctly identifies them for further
manual inspection.

- acc gyr mag

- 16 6
acc 339
gyr 324
mag 318

- acc gyr mag

- 276 205
acc 78 6
gyr 324
mag 1 113

of all cases, while 2% remain for manual inspection. If streams
can not be compared pair-wise, the partial ruleset can still
identify 51% of all cases, of those less than 1% are wrongly
classified, while the remaining require manual inspection.

One could argue that, since threshold and features were de-
signed from, and tested on the same set of data points, the
proposed ruleset will not generalize to unseen streams and
datasets, i.e. do we observe an over-fitted solution to this clas-
sification task? This could be answered by maximizing the
classification score by a search of parameters (lowpass cutoff
frequency, peak detection parameters, thresholds of (6) . . . )
on leave-one-dataset-out splits. In the worst case, there is
no choice of parameters that performs equally well across all
splits, i.e. there is no generalizing set of parameters - best
case, a single set of parameters which performs well across
all splits is found. Figure 2 shows that even when leaving out
one datasets from training, points from another set lie next
to the decision boundary. However, not all parameters are
chosen based on these data points alone (in contrast to what a
machine learning approach would do): (1) the mode threshold
is based on the insight that gyroscope data is concentrated near
zero, (2) the pair-wise peak threshold follows the observation
that the magnetometer distribution exhibits more modes. This
is the case for 98% of the observed data points. The latter
observation has examples in multiple datasets, as is visible
in Figure 2, partially ruling out an over-fit. A cross-validated
automatic choice of parameters would reveal if the opposite
was true, in a formal way. Here we merely report a single set
of parameters that worked - but a better choice of parameters
that maximizes the decision boundaries may well be possible.

A limitation of this work is the "critical mass", i.e. how many
minutes of inertial data are required to make a decision about
the sensor modality. The full dataset was used each time for
feature computation. Varying this parameter would yield in-
sights into the size of this mass, however was not attempted to
avoid over-estimating the quality of the decision. Furthermore,
standardization by dividing by the mean can be problematic
if the sensor was asymmetrically driven into saturation. For
example when the magnetometer was exposed to unipolar mag-
netic interference. In such cases, the mode could be nearer to
zero yielding an incorrect classification. A possible solution
could be to filter outliers.

CONCLUSION
By applying the conditions formulated in equation (6) on an
inertial sensor data stream it is possible to classify its modal-
ity, if the sensor was worn on the human body. Addtionally
to estimating the modality from sensor data, this also allows

to control the quality of meta-data, check the quality of data
itelf, to opportunistically sense from unknown sensors, and
to ease the interpretation of unstructured meta-data. To de-
cide whether a sensor was a gyroscope will most probably
generalize, as the mode of its distribution is a strong indicator
(c.f. Figure 2). However, the decision between acceleration
and magnetometer is more challenging, and as shown, only the
pair-wise comparison of peak count provides a clear indica-
tion. This rests on the presence of environmental fluctuations
on the magnetometer data, which might be smaller when less
movement is involved. Given those assumptions, the ruleset
correctly classifies 98% of 1003 streams in 5 different human
motion datasets.
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