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ABSTRACT
Affective computing aims to detect a person’s affective

state (e.g. emotion) based on observables. The link between
affective states and biophysical data, collected in lab settings,
has been established successfully. However, the number of
realistic studies targeting affect detection in the wild is still
limited. In this paper we present an exploratory field study,
using physiological data of 11 healthy subjects. We aim to
classify arousal, State-Trait Anxiety Inventory (STAI), stress,
and valence self-reports, utilizing feature-based and con-
volutional neural network (CNN) methods. In addition, we
extend the CNNs to multi-task CNNs, classifying all labels
of interest simultaneously. Comparing the F1 score averaged
over the different tasks and classifiers the CNNs reach an
1.8% higher score than the classical methods. However, the
F1 scores barely exceed 45%. In the light of these results, we
discuss pitfalls and challenges for physiology-based affective
computing in the wild.
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1 INTRODUCTION
Experiments conducted by Bower et al. [2] indicate that hu-

man decision making and memorization are strongly linked
to their affective state. Affective computing (AC) aims at
detecting the affective state (e.g. emotion) of a person based
on some sort of observables. Common modalities for this
purpose are for instance physiological indicators [27], smart-
phone data [32], or videos [6]. Many users of commercial
mobile devices are interested in automatically logging in-
formation related to their physical health, e.g. step counts,
consumed/burned calories, heart rate. Recently, a first gener-
ation of commercial devices promising insights into personal
mental health, by detecting stress1 2, entered the consumer
market. Providing users with data-driven insights into their,
especially negative, affective states could help to create more
awareness and lead to an overall improvement of health.

In order to quantitatively describe affective states, dimen-
sional approaches are widely used [12, 15]. Following Russell,
the affective space is partitioned along two axes (valence-
arousal) and each emotional state can be placed in the corre-
sponding space [24]. The valence scale ranges from negative
to positive, whereas the arousal axis represents the level of
activeness (low to high energy) [12]. Following this frame-
work, excitement, for instance, can be placed in the positive
valence/high arousal part of the 2D valence-arousal space.

Over the past decades many AC studies have been per-
formed in lab settings [5, 15, 22, 26]. However, a shift from lab
to field has been observed [28] recently. Unfortunately most
of these studies are rather small scaled. In addition, there is
a lack of datasets and studies containing physiological data
and multi-dimensional labels, acquired at a fine-granular
level. Nevertheless, these field studies bring everyday life af-
fect detection systems, capable of detecting more than stress,

1www.apple.com/apple-watch-series-4/health/
2https://buy.garmin.com/en-US/US/p/567813
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one step closer to their realization. Potential applications of
such systems are diverse. First, affect aware machines (e.g.,
personal agents or robots) could use the affect of the user
as an input, adjusting their behaviour accordingly. More-
over, in psychiatric care, affect detection system can help to
improve diagnostics. Gruenerbl et al. [9], for instance, used
smartphone data to detect state changes in bipolar disorder
patients. In addition, real-word affect detection would pro-
vide users insights into their affective states. This could have
the potential to uncover hidden correlations between mood
swings and external factors.
Wearables, like smartphones and watches, facilitate out-

of-the-lab AC. This is due to three reasons: first, their pas-
sive, unobtrusive, and ubiquitous sensing capability, second,
their computational power, and third, their broad acceptance
by a large number of users. However, due to misplacement
or motion artefacts, data acquired using wearables is often
noisy. In addition, human physiology also differs between
subjects, depending on age, sex, and physical condition [3].
These data related issues aside, obtaining a crisp ground
truth (e.g., precise labels on the affective state) is difficult.
During field studies the subjects have to report their affective
states via ecological-momentary-assessments (EMAs). These
self-reports are subjective, and might drift over time. In ad-
dition, subjects are less likely to report on negative affective
states (social desirability bias [7]). Furthermore, users are not
able to file EMAs during certain events (e.g., exams or job
interviews). Hence, these periods are likely to remain unla-
belled, although they correspond to strong emotional stimuli.
Until now, the detection results published for wearable affect
detection in the wild are limited and can be sometimes worse
than a baseline naive guessing [12].

Working with time-series data, recognition tasks are often
tackled following a common pipeline: preprocessing, seg-
mentation, feature extraction, and then using a classifier to
solve the detection task. Following this classical pipeline, a
suitable representation, also called feature engineering is
one challenge. The fusion of different sensor modalities, of-
ten also sampled at different frequencies, is another. The
first challenge can either be solved by using features known
from literature or by using classifiers (e.g., CNNs), which are
able to extract descriptive features from the (raw) input data.
In addition, CNNs offer multiple ways to fuse sensory data
[20]. Furthermore, end-to-end trainable CNNs easily incor-
porate multi-task learning and unsupervised pre-training.
Operating on the 3-axis gyroscope and 3-axes acceleration
(ACC), CNNs have been introduced to the human activity
recognition (HAR) domain recently, exhibiting outstanding
results [10, 11, 20]. Considering the success of CNNs in HAR
and observing the similarity of data used for HAR and AC,
we investigate the performance of CNNs on different affect
recognition tasks. In this paper we present a realistic field

study on affect recognition, applying latest machine learning
(ML) methods and utilizing wearable biophysical modalities.
We make the following contributions:

(1) We have recorded a novel realistic affect recognition
dataset, containing multi-dimensional labels andmulti-
modal sensory data on 11 healthy subjects over more
than two weeks on average.

(2) The data and labels acquired during this field study
are used to formulate different affect recognition tasks.
The performance of both classical (feature-based) ML
methods and CNNs are compared, and we present a
multi-input and multi-output, multi-task CNN (MT-
CNN) architecture operating on the raw time series
data predicting arousal, STAI, stress, and valence si-
multaneously.

(3) The classification scores for the classical baseline and
the new CNN approaches are comparable to previous
work. We provide a thorough discussion and analysis
on the study’s results, and list new insights on pitfalls
posing limitations on affect recognition in the wild
using wearable sensors.

2 RELATEDWORK
In recent AC field studies, two major directions can be ob-

served: first, stress detection and second, detection/forecasting
of mood, using valence-arousal space [12] or happy/sad
mood as targets [31].

Stress or workload detection in constrained environments,
e.g., during driving tasks [13, 29] or at work [14], have been
studied previously. Hernandez et al. [14] used electro-dermal
activity (EDA) data, also known as skin conductance, of nine
call centre employees to detect stressful calls. Comparing
leave-one-subject-out (LOSO) and leave-one-day-out cross-
validation the latter led to a 20% lower mean accuracy. This
finding highlights the challenges of the subject independent
evaluation. Plarre et al. [23] and Gjoreski et al. [8] present
approaches where information from lab and field studies are
combined to perform a context sensitive stress detection in
the wild. In [8] the authors present a context-based stress
detector and evaluate it on a small scale field study. The
context for this stress recognition system is provided by an
activity recognizer, a stress detector trained on lab data and
further context information (e.g., hour, type of day - week-
end/workday). Following this approach, a mean F1-score of
0.9 is reached. Amajor limitation of this study is its size (N=5)
and, in addition, most of the data were provided by a sin-
gle subject. Furthermore, the mean F1-score, reported in [8],
drops to 0.47 if the detection is purely based on physiological
and inertial data. This indicates that, although targeted by
many, stress detection in the field is not yet a solved problem.
The topic of detecting affective states in the wild using

dimensional representations ("high vs. low" arousal/"positive
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(a) Arousal values. (b) STAI values. (c) Stress values. (d) Valence values.

Figure 1: Violin plots depicting the label distributions for each label type and subject. Mean in red. Median in green.

vs. negative" valence) has been studied by Healey et al. [12].
For this purpose a large dataset has been collected (∼ 900
hours) recording EDA, activity, and cardiac data. However,
the feature-based classifiers trained on this data and using
10-fold cross-validation, performed barely better than naive
guessing. This clearly highlights the challenges for AC in
the wild. In the domain of mood forecasting Taylor et al. [31]
presented a multi-task approach which aimed to predict the
mood, stress, and health of the following day. For this pur-
pose the employed classifiers, different feature-based single
andmulti-task classifiers, e.g., multilayer perceptrons (MLPs),
utilize physiological, context, and questionnaire-based fea-
tures. The highest (binary) prediction accuracies (78%-82%)
were reached employing a multi-task MLP and using groups
of persons with similar personality traits (e.g., Big Five) as
different sub-tasks. Although these results are supported by
a large data base (N=104, recorded days 1842) this approach
has a major drawback: it utilizes survey information (e.g.,
activities, social interaction, sleep) and passively acquired
sensory data. This might be fine for the considered prediction
task (tomorrow’s values based on today’s data). However,
in a classification setup, detecting the current affective state
based on current data, using survey data as input is not
feasible.

Considering the body of related work, we aim to combine
the detection of different affective states based on physiolog-
ical data. As we are interested in real-time applications we
limit ourselves to physiological and motion data only.

3 FIELD STUDY DATA COLLECTION
The quantitative analysis presented in this work is based

on a field study dataset. While the study was still running,
preliminary qualitative results, guidelines, and lessons learned
have been presented in [27]. In total, 12 healthy subjects (7
male, 5 female) participated in the study. Due to sensor mal-
function we had to exclude one participant (female). Hence,
further analysis will be based on the remaining 11 subjects
(mean age 26± 2.5, mean participation duration 16± 1 days).
The study was approved by both the workers council and

the data security officer of our research facility. The recruit-
ment happened mostly via Email and all participants were
students. During the study, physiological time series data,
context information, and affective labels have been collected.
The physiological data was recorded using the Empat-

ica E4 wristband, logging ACC (32 Hz), EDA (4 Hz), photo-
plethysmogram (PPG) (64 Hz), and skin-temperature (TEMP)
(4 Hz). The study participants wore the E4 on their non-
dominant hand during their wake hours. As a result, more
than 1400 hours of physiological data have been recorded.

Prior to the study the subjects completed both a perceived
stress scale (PSS) and a Pittsburgh Sleep Quality Index (PSQI)
questionnaire. During the study labels were generated using
a self-developed Android application (referred to as EMA
App) running on the subjects’ smartphone. During an initial
face-to-face meeting the subjects were taught to use the
EMAApp. Furthermore, the EMAApp was customised to the
diurnal rhythm of each subject. During the configured time
span (e.g., 7.30 to 22.30) the subjects received EMA prompts
every 120 ± x minutes (x ∈ [0, 30] and chosen randomly). In
addition, the participants were instructed to manually trigger
an EMA whenever they felt a change in their affective state.
Daily screenings, conducted during the week, ensured a high
data and label quality. Each EMA incorporated several types
of questionnaires [27]. For this analysis the following subset
of labels is considered:
• Valence and arousal labels generated using the well-
known self-assessment mannequins [19].
• A shortened version (six items) of the State-Trait Anx-
iety Inventory (STAI) [30]. Items were chosen accord-
ing to their factor loads, and scored on a four point
Likert scale.
• Stress level scored on a four point Likert scale [8].

Using the subjects’ smartphones and the EMA App con-
text information was gathered too. This context information
ranges from questionnaire data (e.g., sleep quality and inten-
sity of last activity) to passively acquired information (e.g.,
weather, location, activity, and interaction data). However,
we will limit our analysis presented below to the physiologi-
cal data only. The reasons for this are twofold: first, the EMA
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(a) Arousal Values. (b) STAI values. (c) Stress values. (d) Valence values.

Figure 2: Cumulated arousal, STAI, stress and valence values generated during the field study using our EMA App.

based context information should not be used in our opinion
as it might not be available in most real world scenarios. Sec-
ond, not all passively sensed data is available for all subjects,
e.g., 2 out of 11 participants didn’t agree to location logging.
Figure 1 displays violin plots of the arousal, STAI, stress,

and valence label distributions for the different subjects.
These plots highlight strong inter-subject differences: S4,
S5, and S7, for instance, tend to be more stressed than the
other participants. The histograms in Figure 2 depict the
label distributions. Histograms and violin plots were gen-
erated using all filed EMAs. It becomes apparent that the
corresponding label distributions are skewed: In general, the
histograms exhibit only little mass in the high arousal, STAI,
and stress bins. Judging form the valence scale, the subjects
are more often in a positive than in a negative valence state.
Using Pearson’s R, a correlation analysis has been per-

formed for the labels. A strong negative correlation (-.60)
between the STAI and valence values was found. Further-
more, a moderate positive correlation was found between
the arousal and STAI values (.44) and a strong correlation
is also observed between the stress and STAI values (.68).
The above detailed correlations are significant (2-tailed p-
values < 0.001). We found no correlation between valence
and arousal labels. This finding emphasises that valence and
arousal are independent scales.

4 METHODS
Windowing and questionnaire binning
Similar to [8] we labelled the time period from X − 600

sec to X + 655 sec with the affective states reported in the
EMA started at time point X. The additional 55 seconds
account for the completion of the entire set of questionnaires
and was empirically verified prior to the data collection.
In the next step, these time spans were segmented using a
sliding window. Following, a recent review by Kreibig, the
window size for the segmentation was set to 60 sec [16]. The
window shift was 5 sec. Hence, for each valid time period
240 windows were extracted.
During the segmentation we excluded time periods where
the E4 was either not worn or one of the sensors had a

malfunction. Questionnaires with incomplete physiological
data in the considered interval have been rejected, too. After
the above detailed cleaning procedure a total of 1083 valid
questionnaire were retained.

We formulated a three class classification problem for the
arousal, STAI, and valence labels. The below detailed bins
were chosen in order to establish equally sized bins for the
three class classification tasks. Arousal was binned according
to the following scheme: low (-5, -2], medium (-2, 1], and
high (1, 5]. For valence the same bins were used, yielding
a negative, neutral, and positive class. The employed STAI
thresholds are (5, 12], (12, 18], and (18, 25]. Considering
the skewness of the stress distribution (Figure 2c), a binary
classification problem was formulated. For this purpose the
labels with a value equal to 1 represent the "No stress" class.
The other (2, 3, 4) were used to represent the "Stressed" class.
In Table 1 the number of valid questionnaires per bin are
displayed.

Evaluation Method and Metric
In order to validate our approaches leave-one-subject-out

(LOSO) and leave-target-questionnaires-out (LTQO) were
employed . For LTQO a stratified N-fold 80%/10%/10% (Train/
Test/ Validation) split was performed. The stratified nature of
these splits ensures similar label distributions in the different
splits. However, in contrast to simple N-fold cross-validation,
this scheme ensures that all instances belonging to specific
target questionnaires are placed in the same set. Hence, this
validation scheme provides an insight into the subject de-
pended performance of the different classifiers. This scheme

Table 1: Number of questionnaires in the different bins.

Low Medium High
Arousal 479 519 85
STAI 479 539 65

negative neutral positive
Valence 56 593 434

No stress Stressed
Stress 504 579 -
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PPG Input

Conv 1: N = 4, s = 32
Pool = 4

Conv 2: N = 8, s = 16
Pool = 4

Conv 3: N = 16, s = 8
Pool = 2

Conv 4: N = 32, s = 4
Pool = GlobAverage

Merge Layer

Conv 1: N = 4, s = 32
Pool = 4

Conv 2: N = 8, s = 16
Pool = 4

Conv 3: N = 16, s = 8
Pool = 2

Conv 4: N = 32, s = 4
Pool = GlobAverage

Conv 1: N = 8, s = 4
Pool = 2

Conv 2: N = 16, s = 4
Pool = 2

Conv 3: N = 32, s = 2
Pool = GlobAverage

Conv 1: N = 8, s = 4
Pool = 2

Conv 2: N = 16, s = 4
Pool = 2

Conv 3: N = 32, s = 2
Pool = GlobAverage

EDA Input TEMP Input

ACC Input

(a) Feature extractor applying a four and
three layered CNN architecture to the
windowed data.

FC 2: N = 32

FC 3: N = 16

FC 4: Nout

Merge Layer

FC 1: N = 64

(b) Single-task CNN (ST-CNN) receive in-
put from the feature extractor
(Figure 3a).

FC 1: N = 64

FC 2: N = 32

Merge Layer

FCSTAI 1: N = 16

FCSTAI 2: N = 3

FCStress 1: N = 16

FCStress 2: N = 2

FCValence 2: N = 16

FCValence 2: N = 3

FCArousal 1: N = 16

FCArousal 2: N = 3

(c) Multi-task CNN (MT-CNN) receive in-
put from the feature extractor
(Figure 3a).

Figure 3: Illustration of the building blocks of the CNNs. ST-CNN and MT-CNN are constructed by placing them on top of the
feature extractor, Figure 3a.

has been employed to mitigate the large individual differ-
ences in the label distributions displayed in Figure 1.

Due to the skewness of the considered dataset the macro
F1 score, corresponding to the unweighted mean of the F1
scores for the different labels, is used as evaluation metric.
The performance of the different ML classifiers is compared
to the performance of a sophisticated guesser (also known
as Zero Rule). This classifier always predicts the majority
class found in the training data. Later, an investigation of
different types of classifiers (feature-based and end-to-end
learning) is presented and their performance is compared.

Features and classical approach
For the classical experimentswe followed theHARpipeline

[4] and extracted features from windowed data (size 60 sec,
shift 5 sec). In total 62 features were extracted and used as
input for the classical classifiers. We used the same set of
E4 features as described in Table 1 by Schmidt et al. [26].
These features range from plain statistical features (mean
and standard deviation), to complex physiological features
like heart rate, heart rate variability, or number of peaks in
EDA data. Here, two different experiments were performed:
in the first experiment, the features were used directly as

Table 2: Overview over the numbers of convolutional layers
in the different feature extraction branches and the corre-
sponding parameters. Abbreviations: fully-connected (FC),
rectifying linear unit (RELU).

ACC+PPG EDA+TEMP
32 Hz 4 Hz

# Filter per Layer 4, 8, 16, 32 8, 16, 32
Kernel size 32, 16, 8, 4 4, 4, 2
Max-pool 4, 4, 2 2, 2
Stride + Padding 1 + ’same’ 1 + ’same’
Non-linearity RELU RELU
Neurons in FC layer 64, 32, 16,Nout

input. In the second, a z-transformation, normalizing each
feature to zero mean and unit variance has been applied. For
the classical evaluation the sklearn [21] implementation of
different tree-based classifiers (decision-tree (DT), random-
ized decision trees (ET), and random-forest (RF)) have been
used.
For ensembles (RF and ET) the number of trees were cho-
sen to be N=101. In order to avoid overfitting, the minimal
number of samples per split was set to 150 for all classical
classifiers.

End-to-End learning
In the end-to-end learning scenario the windowed data

served as direct input into CNNs. Below we present an ap-
proach for affect recognition based purely on physiological
time series data utilizing CNNs. Starting with the single-
task CNN (ST-CNN) formulation we extend this approach
to a multi-task CNN (MT-CNN) classifier, predicting arousal,
STAI, stress, and valence simultaneously.
Convolutional Neural Networks
The ST-CNNs and MT-CNNs architectures investigated

here utilize four layer types: convolutional, max-pooling,
global-average pooling [17], and fully-connected (FC) layers.
The CNNs receive the windowed E4 data (ACC, EDA, PPG,
TEMP) as input. As the PPG data has been down sampled by a
factor of two the CNNs deals with two sampling frequencies
(4/32 Hz).

Feature Extraction: The CNNs employ sensor-based late
fusion [20]. This enables the network to learn modality-
specific filters. The feature extraction part of the CNNs is de-
picted in Figure 3a. The architectural parameters (e.g., kernel
size, stride, etc.) were chosen to be the same in branches with
the same sampling frequency (ACC+PPG and EDA+TEMP).
In each of these branches convolution and max-pooling lay-
ers are alternated. Table 2 details the hyperparameters used
in the feature extraction branches. Throughout the network
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RELUs, are employed as non-linearities. After the feature
extraction a global average pooling operation is performed.

Classification: Both the ST-CNN and MT-CNN approach
utilize the feature extraction architecture described above
(see Figure 3a). The main difference between the two ap-
proaches lies in the classification part of the network: the
ST-CNN uses a separate feature extractor for each classifica-
tion task and on top four FC layers (depicted in Figure 3b),
classifying one specific type of label each (e.g., valence). In
contrast, the MT-CNN share two FC layers, have multiple
output branches (see Figure 3c), and are trained to classify
all labels types (arousal, STAI, stress, and valence) simultane-
ously. Apart from the last FC layer where a softmax is used,
the FC layers also use RELUs as non-linearities. In both cases
the CNNs were trained using a cross-entropy loss and mini-
batches of size 1024 or 64. Following the hyperparameter
settings of [11], ADAM was used as optimizer.

Following LTQO the ST-CNNswere trained, validated, and
tested on stratified splits (80%/10%/10%) of the target ques-
tionnaire. In the MT-CNNs setup a stratified split was per-
formed along the arousal labels and the split for the arousal
values was then utilized for the other questionnaires, too.
During training the F1 score on the validation set was moni-
tored. For prediction the weights corresponding to the high-
est score were used.
The number of trainable parameters differs between the

ST-CNN and MT-CNN. The binary ST-CNN stress detector
has 21946 parameters. Each ST-CNN architecture employed
for arousal, STAI, and valence classification contains 21963
trainable parameters. Hence, in the ST-CNN formulation
predicting arousal, STAI, stress, and valence would require
four different CNNs with a total of 87835 parameters. In
contrast, a MT-CNN has a total of 23683 parameters and
predicts all targets of interest simultaneously. This is a factor
3.7 less parameters than in the ST-CNN approach.

Unsupervised pre-training: Similar to Zheng et al. [33]
unsupervised pre-training, using convolutional auto-encoders
(conv. AE), has been investigated. Here conv. AEswere trained
for each sensor modality separately, using ADAM as opti-
mizer and mean squared error loss. All conv. AE were trained
for 40 epochs, using the windowed data (80%/20% train/test).
Apart from the global average pooling operation the modal-
ity specific encoder employed the same type of convolution
and pooling operations as the feature extractors described
above. In the decoder part of the conv. AE upscaling and
convolutional layers (reversing the number of kernels and
filter sizes) were applied. Using these conv. AE weights two
different experiments were performed:
(1) The encoder weights were set to non-trainable during

the fine-tuning (referred to as frozen below). Hence,
only the final FC classification layers were updated
during training.

(2) Both the encoder weights and the classification layers
were updated during the training. This setup is referred
to as not frozen.

Here ADAM, with hyperparameter settings as before, has
been used. The CNNs were implemented in keras with a ten-
sorflow backend and trained on Nvidia GTX 1080 TI GPUs.

5 RESULTS
Feature-based Evaluation

Using the above described features and evaluation schemes
(leave-one-subject-out (LOSO) and leave-target-questionnai-
res-out (LTQO)), the performance of different classical de-
cision tree-based classifiers has been investigated. The per-
formance of these classifiers is compared to a sophisticated
guesser baseline, predicting only the majority class found
in the training set. Table 3 displays the F1 scores generated
using LOSO. The results were averaged over all subjects and
per subject five runs have been performed. Here, the decision
tree-based classifiers are able to outperform the sophisticated
guessing baseline by a large margin. The results of both, the
sophisticated guesser baseline and the decision tree-based
classifiers, have rather large standard deviations. This is to
be attributed to the large inter-subject differences in the label
distributions, which pose limitations on successful general-
ization. Averaging the obtained F1 scores over the different
tasks, the ET using the normalised features (ET+zN) reached
the highest combined F1 score.

In Table 4 the performance of the feature-based classifiers
using the LTQO evaluation scheme is reported. In this setup
the RF and ET reach similar averaged F1 scores. The reasons
for the increased F1 scores following LTQO are twofold: first,
LTQO is subject dependent, which simplifies the problem.
Secondly, due to the stratified split the folds have the same
label distributions, which decreases the standard deviation.
From both Table 3 and Table 4 two major observations can
be made: first, the normalisation has no crucial influence on
the averaged F1 scores. Second, the overall F1 scores are not
satisfying. However, related work reported an F1 score of
.47, using similar feature-based methods for a stress detec-
tion task [8]. Hence, it can be speculated that the employed
classifiers might not be powerful enough to learn these rela-
tions. Therefore, the next section explores the performance
of CNNs, which established the current state-of-the-art on
many HAR tasks [10, 11, 20].

End-to-End learning
Table 5 displays the results from the CNN experiments.

For the binary stress classification task the highest F1 scores
were reached. Similar to the classical results presented in Ta-
ble 4, the lowest scores are obtained for the multi-class STAI
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Table 3: Mean F1 score using feature-based classifiers and
LOSO. Results are averaged over the different subjects and
five runs per subject. The last column displays the F1 score
averaged over the tasks.

Arousal STAI Stress Valence Average
DT 30.9 ± 3.8 31.4 ± 3.4 46.7 ± 5.9 33.5 ± 1.7 35.6 ± 3.7
DT+zN 30.8 ± 3.9 31.3 ± 3.3 46.8 ± 5.7 33.7 ± 1.9 35.7 ± 3.7
ET 31.4 ± 8.1 33.3 ± 9.0 46.5 ± 7.4 41.1 ± 8.2 38.1 ± 8.2
ET+zN 31.4 ± 8.1 33.6 ± 9.3 46.5 ± 7.3 42.2 ± 9.5 38.4 ± 8.6
RF 30.6 ± 5.1 31.7 ± 7.6 46.2 ± 7.2 39.9 ± 8.3 37.1 ± 7.1
RF+zN 30.6 ± 5.2 32.1 ± 8.5 46.2 ± 7.3 39.9 ± 8.4 37.2 ± 7.3
Base 19.9 ± 9.5 21.3 ± 6.7 39.0 ± 20.3 26.4 ± 7.9 26.6 ± 11.1

Table 4:Mean F1 score using feature-based classifiers and the
subject dependent validation scheme (LTQO). The displayed
results are averaged over five runs and the last column dis-
plays the F1 score averaged over the tasks.

Arousal STAI Stress Valence Average
DT 37.4 ± 0.8 34.9 ± 1.4 53.1 ± 0.7 40.1 ± 1.5 41.3 ± 1.1
DT+zN 38.7 ± 2.2 37.5 ± 1.0 52.3 ± 0.4 39.6 ± 1.4 42.0 ± 1.3
ET 38.4 ± 1.5 36.8 ± 1.7 56.3 ± 1.7 42.8 ± 3.1 43.6 ± 2.0
ET+zN 38.8 ± 1.7 35.2 ± 1.9 57.9 ± 3.2 43.3 ± 1.2 43.8 ± 2.0
RF 38.2 ± 2.2 37.4 ± 2.0 54.9 ± 1.6 42.2 ± 0.6 43.2 ± 1.6
RF+zN 38.0 ± 2.5 36.0 ± 2.0 55.8 ± 1.7 42.6 ± 1.6 43.1 ± 1.9
Base 21.7 22.2 34.9 23.6 25.6 ± 5.5

Table 5: Mean F1 score using CNNs and LTQO as validations scheme. All results were averaged over three runs and the last
column displays the F1 score, averaged over the different tasks.

Arousal STAI Stress Valence Average

B
at
ch

si
z
e
=
10
24

Training CNNs from scratch
ST-CNN 44.3 ± 1.4 39.2 ± 0.5 55.5 ± 3.4 42.8 ± 2.4 45.4 ± 1.9
MT-CNN 42.8 ± 3.8 37.4 ± 1.1 56.6 ± 1.6 44.0 ± 2.4 45.2 ± 2.2
Fine-tuning: conv. AE weights are frozen
ST-CNN 43.1 ± 4.1 36.9 ± 0.7 58.3 ± 0.8 43.2 ± 2.0 45.4 ± 1.9
MT-CNN 39.4 ± 1.8 36.3 ± 0.5 56.8 ± 1.5 41.2 ± 0.8 43.4 ± 1.1
Fine-tuning: conv. AE weights are not frozen
ST-CNN 42.5 ± 3.3 38.1 ± 2.2 53.8 ± 6.0 40.4 ± 1.4 43.7 ± 1.9
MT-CNN 43.9 ± 3.0 41.5 ± 2.0 55.7 ± 2.7 39.0 ± 0.5 45.0 ± 2.0

B
at
ch

si
z
e
=
64

Training CNNs from scratch
ST-CNN 42.9 ± 3.0 37.0 ± 0.9 56.9 ± 1.4 40.3 ± 0.9 44.3 ± 1.5
MT-CNN 42.1 ± 1.0 38.3 ± 1.6 57.0 ± 1.1 44.6 ± 3.5 45.5 ± 1.8
Fine-tuning: conv. AE weights are frozen
ST-CNN 40.5 ± 1.6 35.1 ± 0.7 54.2 ± 2.0 43.4 ± 3.6 43.3 ± 2.0
MT-CNN 42.8 ± 5.9 36.6 ± 1.2 56.6 ± 0.9 42.0 ± 1.6 44.5 ± 2.4
Fine-tuning: conv. AE weights are not frozen
ST-CNN 41.9 ± 3.9 38.8 ± 0.7 55.8 ± 1.2 41.7 ± 1.6 44.5 ± 1.8
MT-CNN 40.6 ± 2.4 39.2 ± 3.3 57.7 ± 0.9 41.6 ± 0.9 44.8 ± 1.9

classification. Using CNNs the arousal and valence classifica-
tion tasks are solved with a similar performance. However,
comparing classical valence and arousal classification (see
Table 4) to the CNN-based one, especially the arousal task,
is solved with a higher F1 score.
The mean F1 score over the different tasks using CNNs

is on average 1.8% better than the average F1 score of the
feature-based classifiers. In general, this is only a minor im-
provement. The highest F1 scores reached by the CNNs is
around 45.5%. This result is achieved by the ST-CNN trained
from scratch with Nbatch = 1024 and the fine-tuned ST-CNN,
where the weights of the convolutional auto-encoders (conv.
AE) have been frozen. In addition, the MT-CNN trained from
scratch setting Nbatch = 64 reaches an averaged F1 of 45.5%,
too. Hence, these best CNNs outperform the best classical
approach (ET, averaged F1 = 43.8) by 1.6-1.7%.
In general, the performance of the ST-CNNs and MT-CNNs
are comparable. However, the MT-CNNs predict all labels
simultaneously and require only little more parameters than
a single ST-CNN.
Judging from Table 5 both investigated batch sizes Nbatch =

[1024, 64] led to similar performances. In addition, utiliz-
ing the pre-trained conv. AE weights did not improve the

results. These observations hold for both experimental set-
tings (frozen and not frozen weights in the feature extractor).
The F1 scores presented in Table 5 are only a marginal im-
provement of the scores reached by the classical approaches.
However, the utilized CNNs operate directly on the win-
dowed data and, hence, make feature engineering obsolete.
In addition, the presented CNN are small (less than 25k pa-
rameters). Restricted Boltzmann Machines, requiring up to a
factor of 140 more parameters, were successfully deployed
on a Snapdragon 400 platform [1]. Therefore, the deployment
of our models should be feasible on a similar platform.

6 DISCUSSION
Using data acquired during an affective computing (AC)

field study, we investigated and compared the performance
of feature-based classifies and convolutional neural networks
(CNNs). Even for state-of-the-art CNNs it was challenging
to reach an average F1 score higher than 45%. From litera-
ture, it is known that the posed classification problem is very
challenging [8, 12]. In our approach we see the following
limitations:
Algorithmic: Our pipeline was tailored to directly classify
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the affective state based on features, either learned or hand-
crafted, from 60 sec data snippets. In this approach the tem-
poral and sequential nature of the data are not captured. This
could be improved by adding a refinement step, e.g., voting
over multiple adjacent windows. Another approach would
be to model the temporal nature of the data explicitly by
employing a Hidden Markow Model or LSTM, for instance.
Data and label quality:Data obtained from field studies are
intrinsically noisy and the labels are not completely reliable.
Data noise ranges from sensor misplacement to movement
artefacts. Furthermore, label fuzziness can be attributed to
the subjective nature of ecological-momentary-assessments
(EMAs). We observed an intrinsic bias towards positive la-
bels, this is reflected by the skewed label distributions in
Figure 2. In our opinion the reasons for this skewness are
twofold: first, the subjects are less likely to respond to or
trigger an EMA, while being in a high arousal (e.g. stressed)
affective state. Secondly, according to the social desirability
bias [7] subjects are less likely to report on states less socially
desired (like being in a bad mood). All in all, the data and
label noise certainly has an adverse effect on the results.
Amount of labelled data: Labels gathered via EMAs are
discrete and sparse. For the presented analysis we utilized
1083 valid EMAs. Training classifiers on such small amounts
of (skewed) data is difficult and combating both over- and
under-fitting is challenging, even if different types of regu-
larization, e.g. dropout or L2 regularization, are employed.

Based on the analysis presented abovewe formulate lessons
learned and identify pitfalls for AC in the wild:
Curse of normality: Healthy users are unlikely to exhibit
strong mood swings across the entire affective spectrum.
Assuming a (skewed) Gaussian shape of the label distribu-
tion most labels will be reported around a mean value of
"things are okay/normal". As a result, extrema in the affec-
tive spectrum are broadly underrepresented. In the label data
presented, see Figure 2, this "normal state" is indicated by
low arousal/positive valence and other states are underrep-
resented. Hence, classifying rare episodes where a user is in
an extreme state is, due to the low number of data points,
challenging. However, treating extreme cases as outliers and
applying methods from outlier detection is a direction worth-
while investigating. This could also be used during data col-
lection to trigger EMAs, once an outlier state is detected.
Awareness of affective states: Between 5 and 18% of the
general population has difficulties with identifying and de-
scribing their emotions [18]. Hence, label quality could be
increased dramatically by providing mindfulness sessions
for study participants. In addition, it might be interesting to
explore other labelling techniques than EMAs, where sub-
jects are given more time to reflect about their affective state
and then answer a set of questionnaires.
Representation of affect:Dimensional representations (e.g.,

valence and arousal) of affective states are intuitive. Based
on our study it seems, see Figure 1, that most subjects do
not utilize the entire spectrum. This might be due to per-
sonal biases (e.g., personality traits). One way to mitigate
this bias could be to normalize the labels of each subject.
However, this approach would require the label distribution
to be known. This is not the case, especially in a real world
application. An alternative approach would be to develop
affective scales with a finer granularity tailored to certain
personality types. For instance, if someone claims to be a
rather positive person it might be beneficial to inquire finer
granular levels of positivity (e.g., ’less than normal’, ’nor-
mal’, ’more than normal’), instead of asking about negative
valence. Another idea would be to ask the user to compare
events (e.g., "Are you currently more/less aroused compared
to your last report?"). Both approaches would increase the
variance in the label distribution, facilitating the uncovering
of hidden correlations.
Human activity recognition vs. affective computing:
Both wearable-based HAR and AC utilize similar inputs to
create a user model. In the HAR domain, however, the em-
ployed sensors, ACC for instance, offer direct measures of
the performed activity (e.g., walking). In contrast, consider-
ing AC, the available sensors only offer indirect measures.
In our opinion this contributes to the large performance gap
between HAR and AC detection systems.
Modalities: In our evaluation, we aimed at classifying the
affective state of a person purely based on physiological data.
Although subjects cannot actively influence their physiologi-
cal responses, there are many confounding variables. Judging
from our experiments, the classifiers had difficulties identify-
ing these confounders. Based on literature [8], context data
might be able to alleviate this. However, another direction
could also be to add more informative biomarkers to the
picture, e.g., cortisol level. Furthermore, sleep quality has
been proven to be a powerful predictor for mood [25]. Hence,
this information could also help to improve the classification
results. However, here the sleep quality information should
be acquired in a passive fashion.
Discrete vs continuous: In contrast to biophysical signals
like electro-dermal activity which is available continuously,
other information like sleep quality or cortisol measures are
only available once a day or at discrete time points. Com-
bining both types of information in a single model can be
challenging. One approach could be to have different mod-
els for different scenarios (e.g., one specific mood classifier
for a high and one for a low cortisol level). Alternatively,
these discrete values could serve as one feature used by the
classifiers.
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7 CONCLUSION
In this paper we presented approaches to classify themulti-

label affective state of a person purely based on physiological
time series data. The data was collected from 11 healthy sub-
jects during a field study (mean participation 16 ± 1 days
duration). Specifically, 3-axes acceleration, electro-dermal
activity, photoplethysmogram, and skin-temperature were
used to classify the arousal, STAI, stress, and valence self-
reports. We employed both a subject independent, LOSO,
and a subject dependent, LTQO, evaluation scheme. In a sub-
ject independent LOSO evaluation, feature-based classifiers
reached average F1 scores between 31% (three class arousal)
and 47% (binary stress detection). In the subject dependent
formulation, the performance of feature-based classifiers and
different CNNs is compared. The CNNs lead, compared to the
classical methods, to a minor improvement of the average
F1 score (1.8%).

Our results indicate that despite state-of-the-art methods
AC in the wild is still very challenging. Hence, we discussed
potential pitfalls for wearable-based AC and encourage the
community to pick up on these challenges.
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