
Experiences from a Wearable-Mobile Acquisition System
for Ambulatory Assessment of Diet and Activity

Kristof Van Laerhoven
University of Siegen

Siegen, Germany

Mario Wenzel
Johannes Gutenberg University

Mainz, Germany

Anouk Geelen
Wageningen University & Research
Wageningen, The Netherlands

Christopher Hübel
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ABSTRACT
Public health trends are currently monitored and diagnosed
based on large studies that often rely on pen-and-paper data
methods that tend to require a large collection campaign. With
the pervasiveness of smart-phones and -watches throughout
the general population, we argue in this paper that such devices
and their built-in sensors can be used to capture such data more
accurately with less of an effort. We present a system that
targets a pan-European and harmonised architecture, using
smartphones and wrist-worn activity loggers to enable the
collection of data to estimate sedentary behavior and physical
activity, plus the consumption of sugar-sweetened beverages.
We report on a unified pilot study across three countries and
four cities (with different languages, locale formats, and data
security and privacy laws) in which 83 volunteers were asked
to log beverages consumption along with a series of surveys
and longitudinal accelerometer data. Our system is evaluated
in terms of compliance, obtained data, and first analyses.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous;

Author Keywords
multi-modal data collection and presentation; barcode
scanning; beverage consumption logging; activity recognition

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
iWOAR ’17, September 21–22, 2017, Rostock, Germany
Copyright © 2017 Association for Computing Machinery
ACM ISBN 978-1-4503-5223-9/17/09. . . $15.00
http://dx.doi.org/10.1145/3134230.3134239

Beverage,	
Loca,on	

					3D	raw	
	accelera,on	
(con,nuous)	

Survey	answers,		
Loca,on	(7x	per	day)	

Figure 1. Our approach merges data collected from participants’ smart-
phones and activity trackers to obtain all relevant information to soft-
drink consumption and sedentary activity over the course of a week.

INTRODUCTION
Present-day data collection efforts to acquire specific informa-
tion from across a large cross-section of a population tends
to be a considerable undertaking. These surveys are highly
needed, however, to gain a deeper and more accurate under-
standing into what factors influence diet and physical activity.
By exploiting technology that is already present in the popu-
lation, capturing these determinants across large populations
then would enable us to more effectively promote healthy diet
and physical activity. This paper will specifically highlight the
challenges when harmonising the collected data in such stud-
ies across administrative and cultural borders, as individual



countries and states do not tend to use the same methodologies
and collect inherently different multi-modal data sets.
We report in this paper on a pan-European research effort to
design and study a system to gather data across borders, us-
ing participants’ smartphones and custom wrist-worn activity
logging devices that are able to record raw 3D acceleration.
The presented research was part of the European Joint Pro-
gramming Initiative Healthy Diet for a Healthy Life action
Determinants of Diet and Physical Actitivy (DEDIPAC) knowl-
edge hub (www.dedipac.eu, [13]). Through a combination of
smartphone-based questionnaires and the collected location
and activity data, we are able to capture the context (including
the user’s mood, location, activity, type of drink) of sugary
drink intake. Important however is the scalability of such
a system, so that collection efforts can be performed more
frequently and at a large-enough scale. This paper’s main
contributions are therefore threefold:
• An information collection system is presented that operates

through an App that is easy to deploy and run on the partici-
pant’s smartphone, using its built-in sensors and interaction
capabilities for questionnaires, with an activity logger.

• A first evaluation on the performance of the system is pre-
sented, detailing how the deployment was organized, as
well as investigating the speed, reliability and robustness in
the collection and fusion of all collected information.

• A pilot study across three countries with 83 participants
forms a first evaluation of our approach, providing first
insights into the challenges and pitfalls in starting and main-
taining large-scale ambulatory assessment studies.

BACKGROUND AND RELATED WORK
Diet and physical activity have been known to play a critical
role in overall human health, and have as a consequence been
studied extensively in the past decades [13]. Most of this
research is based on data from pen-and-paper self-reports pro-
duced by volunteers, which tends to make the data gathering
process slow, expensive, and prone to errors. The importance
of performing such studies and analyzing their data appro-
priately is high, and is used for guiding policies worldwide.
As an example, the WHO has recently argued for taxes on
sugar sweetened beverages that would result in proportional
reductions in consumption, especially if aimed at raising the
retail price by 20% or more [18].
Traditional self-reporting is the gold standard approach for
collecting and monitoring dietary behavior across larger popu-
lations. As with any self-reported data collection, it is likely to
contain certain amounts of bias and erroneous data due to false
recollections (a set of issues can be found in [12]). The efforts
required to prepare such a study, to make sure that bias and
errors are reduced to a minimum, and to collect and integrate
all data afterwards is furthermore significant. Although there
is little evidence on calculating sample sizes for such pilot
studies, a recently published study [6] suggests a sample size
of at least 9% of the population of the main study. Motivated
by these types of problems, more objective measuring tech-
nologies have been suggested, which are able to monitor diet
and physical activity with less effort from the study volunteers,
and are easier to deploy and collect.

A vast range of technology-based dietary monitoring technolo-
gies have been reported on in the past decade. Some research
has investigated the use of body-worn sensors to track the spe-
cific sounds [1], capacitive changes around the neck [?], or the
gestures of arms, wrists, and the upper body while of eating or
drinking [19]. Recent work has focused on using exclusively
off-the-shelf smartwatches [23], obtaining fair precision (65%)
and recall (78%) measures for such systems under free-living
conditions, which still remain rather low for use in large data
collection efforts.

Camera-based approaches such as presented in [20] or [2]
have been evaluated for basic feasibility, but were found to
be not yet ready for large-scale deployments, either. Systems
presented vary between fully wearable systems that regularly
take pictures of the user’s field-of-view [17] and camera sys-
tems that need to be installed in the user’s environment. The
challenge of managing the thousands of first-person-view im-
ages of food scenes can be met, for instance with the help of
machine learning techniques and crowdsourcing efforts, as
for example presented in the Platemate project [16] or as pro-
posed in [24]. However, the installing or wearing of a camera
with a limited battery lifetime is mentioned as one of the main
hurdles [2] for larger-scale in the wild studies.

Activity recognition has been an active research area since at
least a decade and a half. Some of the previously-mentioned
inertial approaches have been used to detect physical activity,
sleep and sedentary segments, specific gestures, and routines
[4]. Although first implementations on smartphones had con-
siderable impact on the phone’s battery lifetime due to the
extra data collection tasks, recent methods have achieved im-
provements through down-sampling and prediction strategies
[26]. An additional benefit of using smartphones is the ability
of complementing the phone’s sensor set with specific wireless
sensors to collect physiological data of interest. Other work
specifically targeted smartphone-based collection of data, al-
lowing larger populations and longitudinal experiments. These
studies have shown that deploying software on popular mobile
platforms has become very effective and that the generation
of such data can contain behavioral patterns [14]. The use
of a mobile device does have its limitations, however. As for
instance presented in [7], the assumption that most partici-
pants will have their smartphones always on and at-hand for
collecting user data, and for triggering interactions with the
user, is found to be generally not true.

This paper describes an alternative approach, in which we rely
heavily on both wearable and mobile technology to capture
events of interest with situated surveys. Two public health
challenges were identified that should be studied as outcomes
with the impact of selected determinants being examined: (1)
sugar-sweetened beverages intake and (2) sedentary behavior.
Our approach targets large deployments especially, by relying
on the Android platform and Google’s Play Store, enabling our
smartphone App to be installed by the study participants on
their personal smartphones. Activity loggers that can record
accurate and raw acceleration data over extended periods of
time, however, are not yet as ubiquitous and still need some
installation and deployment effort from the study organizers.



SYSTEM DESIGN AND COMPONENTS
The presented system consists of both user-worn devices and a
back-end server where all data is collected and unified. These
components, as well as the distribution and collection pro-
cesses, are described in more detail in this section.
Architecture and User Devices. Two mobile devices reside
with the study participants during the data collection: A wear-
able activity logging device for capturing activity and a custom
smartphone App for capturing questionnaire data and beverage
consumption information. The information from the wearable
unit is recorded continuously for the entire duration of the
experiment, whereas the App’s data is inherently event-driven.
The data from both devices is recorded locally, and is merged
and synchronized after the experiment on a secure server. Fig-
ure 1 gives a brief overview of the type of information that is
collected during the study. Our system’s software architecture
is distributed over the smartphone’s App and the server.
For the Android App, written in Java, we have used the my-
HealthHub event-based middleware [21] as a basis for collect-
ing sensor information and managing questionnaire events,
with the option of including bluetooth-based sensors in the
future. This requires two processes to be active on the smart-
phone, the myHealthHub middleware and our data collection
App, which are both launched on the participant’s phone when
the experiment starts. For the accelerometer devices, we used
the software that comes with the units to start and configure
them; This included setting their internal date and time for
later synchronization across all data sources. The server-side
software is a set of data preparation, fusing, and analysis rou-
tines written in Python, that collect and synchronize all data
from the participants’ devices, to store these in a database.
Capturing Sedentary Behavior and Activity. The past
years have seen a large variety of wrist-worn fitness track-
ers that allow the users’ activity levels and activities such as
sleeping, walking, or jogging to be recorded. For our purposes,
however, three requirements make the selection of fitting ac-
tivity loggers considerable smaller. First, raw accelerometer
data delivering 3D readings in a known unit (usually milli-g)
is needed so that data can be compared and converted across
different devices. Second, the devices need to be able to sam-
ple acceleration values at a rate of at least 25 times per second
in order to be able to detect particular activities later on. Third,
the devices need to be able to run continuously for at least
a week so that participants do not need to take care of the
device themselves on a regular basis. An additional aspect was
the availability of exporting the raw acceleration data into a
common readable format; Solutions from commercial devices
tend to vary wildly in this regard and routinely require custom
software and analysis algorithms.
For this reason, we selected three different activity logging
devices that fit the above requirements (depicted in Figure 2),
meaning they are able to log continuous accelerometer data at
a relatively high sampling rate, over larger time spans: (1) The
Actigraph GT3X1 stores 3D acceleration and ambient light.
Data from the GT3X were sampled at a frequency of 32Hz and
after the study downloaded and stored as proprietary binary
1The Actigraph GT3X: http://actigraphcorp.com/support/
activity-monitors/gt3x/ [last access 06/2017]

Figure 2. The particpants’ activities were monitored with a variety of
accelerometer-based activity loggers (from left to right): the Actigraph
GT3X, the Movisens move II, and the Hedgehog. All capture 3D acceler-
ation at a frequency of 30 to 100 Hz for at least a week, continuously.
gt3x file or, after conversion, as comma-separated CSV text
files. (2) The Movisens move II device2 can record 3D acceler-
ation, barometric air pressure and temperature. Unlike the two
others, these units were worn at the waists and were generally
taken off by the participants at night. The acceleration read-
ings were selected to be sampled at 64 Hz and stored as binary
data with the unisens3 format. (3) The HedgeHog device 4 can
record 3D acceleration, temperature, and ambient light. It is,
unlike the previous two devices, a research prototype whose
design specifications, both hardware and software, have been
open-sourced. We used a sampling frequency of 25 Hz and an
acceleration range from -4g to 4g with an accuracy of 0.003g.
Data from these units is stored as compressed NPZ data files
that cab be read using the widely-available NumPy package.
Capturing Beverage Consumption Although several sys-
tems have been conceptualized that aim at automatically rec-
ognizing the consumption of beverages by means of wearable
sensors, there are currently no devices that detect the type
of beverage well enough and can be deployed at large scale.
Instead, we opted for using the personal smartphone’s built-in
camera to allow the study participants to enter this information
as quickly and accurate as possible. For this, three options
have been explored and implemented: (1) Taking a picture of
the beverage for later recognition, (2) Recognizing the bar-
code on the beverage, or (3) manual input. Since the first
option was hardly used in pre-trials and needs significant post-
processing, we kept only options (2) and (3) for the main
study. For a fast selection of beverages, participants could
choose from a top-tier list between a selection of the follow-
ing options: Sugar-sweetened carbonated drink, other sugar-
sweetened drink, sport drink, energy drink, diet carbonated
drink, other diet drink, smoothie, fruit-, or vegetable juice.

The sugar-sweetened beverage consumption is characterized
further at every occasion, by asking the participants for sup-
plemental information by themselves. In addition to storing
a description of the beverage, the time at which it was con-
sumed and the particpant’s location (when this service was

2Movisens move II: https://www.movisens.com/en/products/
activitysensor/ [last access 06/2017]
3The Unisens universal data format for multi sensor data: http:
//www.unisens.org/ [last access 06/2017]
4The HedgeHog [8] Activity Logger: http://kristofvl.github.
io/HedgeHog/ [last access 06/2017]

http://actigraphcorp.com/support/activity-monitors/gt3x/
http://actigraphcorp.com/support/activity-monitors/gt3x/
https://www.movisens.com/en/products/activitysensor/
https://www.movisens.com/en/products/activitysensor/
http://www.unisens.org/
http://www.unisens.org/
http://kristofvl.github.io/HedgeHog/
http://kristofvl.github.io/HedgeHog/


Figure 3. Some examples of raw 3D accelerometer (top plots) and accumulated activity intensity plots (bottom plots) gathered from the activity trackers
from three participants. These show the data from one week, with times at which they filled in the questionnaires and at which they drank a beverage
annotated with red markers and a description of the beverage. Note that participants sometimes took off their activity loggers at night (leading to no
motion for several hours) and that beverage annotations were made in the local language (in Dutch, German, English, or Norwegian).

activated on the phone), also the amount (in glasses, or 250
ml) would be stored. Table 1 shows an excerpt of the infor-
mation that was gathered for a set of beverage consumption
instances. Whenever participants opted to use the beverages’
barcodes, the obtained codes are decoded into beverage de-
scriptions through a (paid) Open EAN/GTIN database5 API,
complemented with manual entries, on the back-end server.

ID DATE TIME NAME AMNT BARCODE BCN SSB LONG LAT
142858 12-1-2016 09:28:14 Water - - - - 51.9850 5.6663
142858 13-1-2016 13:25:42 Water - - - - 48.0118 7.8343
142858 13-1-2016 17:13:47 Andere suikerh. 1.0 4890008100231 - 1 48.0118 7.8343
142858 14-1-2016 22:33:54 Energie drankjes 1.0 23001251 - 1 51.9728 5.6727
142858 15-1-2016 10:20:11 Water - - - - - -
142858 15-1-2016 12:45:42 Water - - - - - -
142858 15-1-2016 16:44:59 Andere suikerh. 0.5 23001244 - 1 51.9730 5.6730
142858 16-1-2016 20:37:58 Suiker+koolzuurh. 1.0 8713500008460 - 1 51.3997 5.3443
142858 16-1-2016 21:23:32 Water - - - - 51.3997 5.3443
142858 17-1-2016 17:21:11 Suiker+koolzuurh. 0.5 5000112544633 - 1 51.3997 5.3443
142858 18-1-2016 10:39:15 Water - - - - - -
142858 18-1-2016 12:31:17 Koffie, Thee - - - - - -
142858 18-1-2016 12:43:31 Andere suikerh. 1.0 87222548 - 1 51.9729 5.6726
142858 19-1-2016 10:48:49 Water - - - - - -

Table 1. Example of the beverage information gathered with the partici-
pants’ smartphone: Participant ID, date and time, beverage description
(name) and amount, barcode data, and position (when available).
5Open EAN/GTIN database: http://opengtindb.org/ with a 6-
month fee of about $150 for API access[last access 01/02/2017].

Capturing Self-Report Data.Daily self-report surveys on the
participants’ mood, social vs. non-social situation, media
use and availability, and social norms pertaining to sugar-
sweetened beverages were triggered on the smartphone via
the same App. These questionnaires were selected by the co-
authors of this paper that have backgrounds in the domains
of nutrition research and psychology. The goal was to assess,
with surveys from key research studies presented in these fields
[5, 15, 22, 9, 25], the state factors such as self-control, need
for affiliation, social identity, social norm influence, exposure
towards temptations, and mood.
Each day, starting at 9 a.m., seven signals are distributed
throughout a time window of 14 hours, following recommen-
dations of [10]. Within each 2-hours block, participants are
randomly signalled by our smartphone App to complete the
same questionnaires with the condition that two consecutive
signals are at least 30 minutes apart. If the participants do not
respond to the alarm within 30 minutes, the message on the
smartphone disappears and the observation is listed as missing.
The previously mentioned signal refers to the (semi-random)
alarm scheduled by our smartphone App, which prompts par-
ticipants to complete a particular questionnaires. The follow-
ing event-triggered measures were thus assessed seven times
per day, for the one week duration of the study:

1. State Self-Control Capacity Scale (10 items; [5])
2. Need for affiliation: Need to Belong Scale (1 item; [15])
3. Social identity: One item adapted from [22]: ”I identify

with/feel a connection to fellow university students.”
4. Social norm influence: Three items on the presence of

others or enactment models, respectively (see [9])

http://opengtindb.org/


5. Environment: Exposure towards temptations, current avail-
ability of sugar-sweetened beverages and use of media
equipment in the environment (7 items, self-report)

6. Multidimensional Mood Questionnaire (6 items; [25])
7. Objective measurement of the environment: Exposure to-

wards temptations (e.g., availability of sugar-sweetened
beverages) as well as availability of media equipment was
assessed via GPS-based localization every 15 minutes.

PILOT STUDY DESIGN AND METHODOLOGY
The study was designed by a team of nutrition experts, psy-
chologists, and engineers. The following provides the details
in participant selection and study procedure.
Participants’ data were collected in two waves in four study
sites spread over three countries, with a different language
each. The final sample consisted of 83 volunteers (56 females,
age M = 23.0 years, SD = 3.3) with an average BMI of M =
21.5 kg/m2 (SD = 2.5). Participants were recruited mainly on
the study sites’ campuses. For participating in the trial, partic-
ipants from Wageningen have received a renumeration of $50
after study completion, those from Oslo received a gift card of
about $25, while participants from Mainz and Bremen did not
receive monetary compensation, but instead received partial
course credit. Table 2 summarizes the inclusion and exclu-
sion criteria used, with the assessment of mental and physical
disorders solely being used for the purpose of assessing the
inclusion- and exclusion criteria and discarded afterwards.
Study Procedure. The study comprises the core ambulatory
assessment study, a pre-monitoring baseline laboratory session
and a post-monitoring session. Participants received informa-
tion about the study procedures via email or during a meeting
and had the opportunity to ask questions regarding the project.
They also received the inclusion and exclusion criteria, and
upon confirming inclusion criteria, they participated in a first
session where they signed informed consent and where the use
of the smartphone questionnaires via the App and the wear-
able accelerometer was explained. Furthermore, participants
completed trait questionnaires regarding their level of self-
control, need for affiliation, social identity, and social norm
influence. Starting the day after this session, participants wore
the accelerometer unit continuously for one week, while also
recording beverage consumption information and completing
the triggered questionnaires on their smartphones.

inclusion criteria exclusion criteria
Age: 18 to 30 years old Pregnant or breast feeding (self-report)

University student Students of nutrition, food,
or sports science studies

Provision of informed consent Mental disorder including eating
disorder or substance abuse

Sufficient knowledge of the language BMI ¡18.5 or ¿35.0 (self-report)
of the respective country

Sugar-sweetened beverage Diabetes mellitus or other
consumption of at least one per relevant disease (self-reported).
week Intake of drugs affecting

metabolism like cortisol or diuretics

Possession of a compatible smartphone
(Android 4.0 +; 100 MB available)

Table 2. A short overview of inclusion and exclusion criteria for our pilot
study across 4 cities (and three nations).

After one week, participants returned for a second laboratory
session where they were debriefed. During this debriefing
session, the participants were asked whether any complica-
tions using the accelerometer device or the myHealth Assistant
framework occurred. After that, they were asked to complete
a questionnaire to judge study feasibility. To underpin these
subjective measures, the number of missing observations and
responses were counted. After data collection and analysis was
completed, participants received a document containing stan-
dardised feedback information on sugar-sweetened beverage
consumption, physical activity and self-control.
Study Measures. Besides participants’ compliance, sugar-
sweetened beverage consumption and physical activity were
the primary outcomes of the pilot study. The following mea-
sures were assessed both between-subjects at baseline and
within-subjects seven times per day for one week: Sugar-
sweetened beverage consumption, self-control, need for af-
filiation, social identity, and social norm influence. Physical
activity and mood exposure towards media equipment were
only assessed within-subjects. All acceleration data was con-
verted to a common format and processed in two subsequent
passes. In a first pass, the raw acceleration data was converted
to actigraphy-like readings where the standard deviation was
taken per axis for each minute of data, and summed up over
all axes (the bottom plots in Figure 3 depict the results of this
transformation). These were used to facilitate the estimation
and quantification of sedentary activities throughout the data.
In a second pass, a set of activity recognition classifiers was
used on the raw 3D acceleration data that was determined
to be non-sedentary in the first pass, to detect the more spe-
cific classes of walking and running (using the large-scale
accelerometer-based dataset corpus and the random forest
classifier suggested by [11]).

DISCUSSION OF RESULTS
The first results obtained from the collected data, in particular
the participants’ compliance and first analyses on the beverage
and activity data, show the following:
Compliance to signal-contingent self-reports. To study
compliance to the study protocol, we first investigated the
proportion of completed signals to the total signals, by con-
ducting a multilevel logistic regression with signal as the out-
come (1=completed, 0=not completed). As predictors, we
included the running signal number as well as study site and
wave, controlled for gender and age, since these variables have
been found to be associated with compliance to ambulatory
assessment. This model revealed an acceptable compliance
of 65.7%. Moreover, we found a significant effect of study
site, χ2(3) = 17.04, p ¡ .001. Participants in Oslo (M = 45.7%,
SEM= 8.0) and Bremen (M = 52.6%, SEM = 7.1) completed
fewer signals on average than participants in Mainz (M =
72.7%, SEM = 3.6) or Wageningen (M = 77.4, SEM = 4.5),
with p ¡ .017 and no difference between the latter, p = 0.447.
Furthermore, although wave only approached statistical signif-
icance, χ2(1) = 2.55, p = .111, the simple slopes showed that
compliance improved from wave 1 (M = 60.0%, SEM = 4.2)
to wave 2 (M = 70.6%, SEM = 3.5).
Regarding the effect of time on compliance, the model re-
vealed a significant but small effect of the running signal



Figure 4. An example where windowed activity intensity for a participant around different beverage consumption instances exhibits strong correlation.

number, OR = 0.98, z = -6.65, p ¡ .001. Thus, with each signal,
the chance of completing a signal decreased by approximately
2%. Although this might seem small, effect sizes in analyses
with repeated measurements sum up; In this case, compliance
is reduced by each trial, leading to a drop of compliance of
approximately 16.6 percentage points from the first signal
(M = 75.5%, SEM = 2.2) to the last of study (M = 58.9%,
SEM = 2.7). Interestingly, a three-level regression model, with
signals nested within days nested within participants, on the
completed signals with study day (e.g., the second day of the
study) and the current signal of the study (e.g., the third sig-
nal of the second day) as predictors revealed that participants
completed fewer signals with each subsequent day, OR = 0.82,
z = -7.96, p ¡ 0.001, but more with increasing time during the
day, OR = 1.06, z = -2.71, p = 0.007.

Compliance to event-contingent self-reports. We repeated
the same analyses as for the signal-contingent self-reports
by conducting a mixed regression model with the number of
reported beverages within two signals and the predictors out-
lined above. While study site was not significantly associated
with the number of reported drinks when wave 1 was com-
bined with wave 2, the latter exhibited a significant effect on
beverages reporting: Participants in the second wave (M =
0.44, SEM = 0.04) reported significantly fewer drinks within
two signals than participants in the first wave (M = 0.15, SEM
= 0.04), b = 0.29, z = 4.77, p ¡ 0.001.
As in the signal-contingent self-reports, participants reported
less drinks over the course of the study, b = -0.003, z = -4.32,
p ¡ .001, leading to a drop of compliance on beverages reports
of approximately 0.13 drinks within two signals, from the
first two signals (M = 0.36, SEM = 0.02) to the last two of
study (M = 0.23, SEM = 0.02). We followed up on this by a
three-level mixed regression on the reported number of drinks
within two signals, including study day and signal of the study
as predictors. This model showed that both study day, b =
-0.02, z = -5.39, p ¡ .001, and signal of the day, b = -0.01, z =
-3.11, p = .002, were significantly negatively associated with
beverages reporting, in that participants reported fewer drinks
over the course of a study day and the study. // Regarding
beverage consumption, participants registered a total of 2613
drinks, which amounts to about four and a half drinks per
day (2613 drinks / (83 participants * 7 days) = 4.50). Out
of these, 178 drinks have been registered as sugar-sweetened,
with participants reporting to consume on average 2.22 glasses
of sugar-sweetened beverages (SD = 3.22). An ANCOVA
on total reported sugar-sweetened beverages, controlled for
gender and age, yielded significant main effects for study site,
F(3, 73) = 4.44, p = .007, ηp

2 = .16, and wave, F(1, 73) =

9.18, p = .004, ηp
2 = .12. The main effect of study site was

driven by lower sugar-sweetened beverage consumption on
average in Bremen (M = 0.70, SD = 1.35). The other sites
Mainz (M = 2.76, SD = 3.54), Oslo (M = 2.75, SD = 3.22),
and Wageningen (M = 1.83, SD = 3.63) had no significant
differences. For wave as a factor, participants in wave 2 (M
= 2.68, SD = 3.41) reported higher sugar-sweetened bever-
age consumptions on average than participants in wave 1 (M
= 1.80, SD = 3.03). However, the total number of reported
drinks was also higher in wave 2 and the effect of the wave
was reduced but still significant, F(1, 73) = 5.32, p = .024,
ηp

2 = .07, when total number of reported drinks was included
in the ANCOVA as a control variable. Out of 2613 reported
drinks, location could be retrieved for 1235 drinks (47.3%).
We conducted a multilevel logistic regression which yielded
a significant effect of site, χ2(3) = 19.37, p ¡ .001, indicating
that localization worked significantly better in site Mainz (M
= 63.1%, SD = 4.8) and in Oslo (M = 65.9%, SD = 4.8), com-
pared to site Bremen (M = 27.5%, SD = 4.3) and Wageningen
(M = 27.5%, SD = 4.5). However, the low proportion of loca-
tion coordinates may be due to the fact that some smartphones
were initially provided to the participants without SIM cards,
or that the smartphones owned and used by the participants
did not always have mobile internet available. We supplied
the smartphones used in the second wave of studies with 4G
SIM cards, which improved location coverage substantially:
The proportion increased from under 34.3% to 72.7%.

Activity, beverage consumption, and routines. Beverage
consumption and activity intensity occur within routines of an
individual and can be found in the data through correlation
analysis using the beverage report times and the sedentary
behavior data (as obtained through axes-summed standard de-
viation over the window of a minute). We used time windows
varying from 10 up to 60 minutes, for which we measured the
correlation in acceleration intensity between different drinking
instances for the same person. The effect of correlation win-
dow size, intensity of activity before and after the beverage
consumption, and subsequent timestamps for beverage con-
sumption were explored as possible variable parameters across
all 83 participants. Potential weekday routines (i.e., similar
time-of-day events in the data on different days) were used to
estimate a lower bound on the hit rate of finding a potential
user routine. Of all participants, 47 participants showed to
have at least one such routine in their data to verify against,
with 20 participants showing at least one such recurring rou-
tine for all weekdays. After exploring all parameters, it was
found that using one timestamp, proceeded by a window of
30 minutes for activity intensity and followed by one of 60



minutes, provided the best results. As a more qualitative result
from the first analyses of the data, we argue that the recog-
nition of specific activities, such as in our case walking and
running, within the acceleration signals can be used to identify
these routines more accurately, though these were found to be
far less numerous in the pilot study’s data. Several of such
instances were found through visual inspection of the data,
which could be automated so that participants can be inter-
viewed for these routines in further studies. It is important
to note that such routines are likely to be different in studies
that would recruit participants from other age categories or
environments; As our pilot study recruited mostly university
students, other populations might see higher (e.g., in school
children or office workers) or lower (e.g., persons with more
flexible daily schedules) amounts of such routines.

LESSONS LEARNED
Although it is foreseeable that a study distributed across sev-
eral nations is far from trivial, we here summarize the more
prominent technical challenges in organizing the pilot study.
Ethics committee approval for studies like our pilot study is
mandatory, and consists of a different process in each of the
countries where a deployment of the pilot study was planned.
For the system to be deployable in all study sites, it was re-
quired to implement a more stringent set of requirements over
all three countries in which the study was held. The following
technical requirements were made across all sites by one of the
ethics committees: (1) Location entries from GPS (as logged
by the smartphone App) needed to be partially filtered so that
residents’ addresses were, after data collection, blurred using
a method implemented by [3]. (2) Our acceleration-logging
devices were accepted by the respective ethics review commit-
tees, largely on the premise that data was kept locally on the
devices. (3) All information on diet, media use, mood, and
self control were stored under a pseudonym in a secured data
base at the local organizer’s site.
Automatic updates via the app store for the smartphone App
during pre-trials and the main trial at every site has proven to
be a big advantage. Originally, we moved to the app store to
facilitate deployment, but this feature was also used during the
study. This meant that errors occurring at the data gathering
phase could be investigated and fixed immediately, and a new
version of the App could be published via Google’s Play Store,
triggering automatic updates on the participants’ phones, at
any time. This feature has been used extensively and saved
time in redeployment for updates, as the App has seen 14
major revisions over the course of 7.5 months.
Diversity in platforms. Although our App was designed to
solely run on Android version 4 and above, the platforms
used in our study were, through the inclusion of participants’
phones, diverse. Android OS versions 4 were installed on
smartphones from 7 participants, version 5.0 and 5.1 on smart-
phones from 16 and 19 participants, respectively, and version
6.0 was installed on 41 smartphones. If participants did not
own a compatible Android smartphone, a Motorola Moto G
(2nd gen) was supplied, which was the model that was most
often used by the participants (45 times). Other popular smart-
phones used by the participants include the Samsung Galaxy
S3 to S7 (15 times) and Sony Xperia Z3 (12 participants).

Unification of data was an unexpected challenge, both on
the level of fusing data from different devices, as well as for
the merging of all survey data over the different languages
and region-specific settings of the study sites. The setup of
the study at all sites contained a slight overhead because of
different languages, renumeration setup, and region-specific
software errors, but designing the system and unifying the
data for all nations involved became particularly challenging.
Furthermore, as the App was designed at one site, software up-
dates regularly contained the fixing of spelling mistakes for the
other languages. Many of the App’s reported bugs were very
specific and often could be tracked down to software interfaces
with Android libraries: One instance for example occurred
only on phones with a Norwegian locale, while scanning a
barcode in landscape mode. Establishing data unification was
initially hampered by the fact that the data from the accel-
eration units tended to be large (up to around 1.5 GB per
participant) and took long to be processed on the server.

CONCLUSIONS
Self-reports, which are completed by study participants, are
currently the standard method when investigating diet, seden-
tary behavior, and physical activity across large populations.
Mobile and wearable technologies can complement and en-
hance such collection methods with more accurate and real-
time data. This paper presents a study with such as system,
in which a collection system with smartphones and wear-
able accelerometer units was developed to monitor the sugar-
sweetened beverage consumption and physical activity of 83
participants, across four cities in three different nations.
The results of our pilot study have been promising: Participant
compliance did vary across the study sites but was found to be
acceptable during the one-week deployment. The activity data
has shown that coarse routines can be automatically extracted
around beverage consumption events and that basic activity
recognition approaches help in identifying and verifying these.
There were several lessons learned from a technology perspec-
tive. Studies that aim at surveying large populations, even
with the help of mobile and wearable technologies, will al-
ways require a significant effort, though we have found several
unexpected pitfalls and ”lessons learned” throughout our spe-
cific pilot study. Cross-nation studies will need to comply with
more firm ethics requirements, as they need to answer to mul-
tiple committees at the same time. Making smartphone Apps
available via app stores not only accelerates the deployment
phase, but is particularly helpful in spreading regular updates.
This is all the more helpful as a highly diverse ecosystem of
smartphones is likely to lead to problems during the study.
Finally, it is easy to underestimate the unification of all data,
with language barriers and a current lack of standards between
the wearable accelerometers being especially challenging.
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