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Figure 1. An example of the clustering result for one DNA extraction experiment. Shown are the acceleration time series (data, red, blue, green), ground-
truth labels (background colors), and transitions found from clustering (blue vertical bars). Additionally, some video stills at the top show the process
at different moments in time (arrows; l.t.r.: stirring, peeling, pestling, pouring). The cut marks are extracted from wrist acceleration measurements.

ABSTRACT
Authoring protocols for manual tasks such as following
recipes, manufacturing processes, or laboratory experiments
requires a significant effort. This paper presents a system
that estimates individual procedure transitions from the user’s
physical movement and gestures recorded with inertial motion
sensors. Combined with egocentric or external video record-
ings this facilitates efficient review and annotation of video
databases. We investigate different clustering algorithms on
wearable inertial sensor data recorded on par with video data,
to automatically create transition marks between task steps.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
iWOAR ’17, September 21–22, 2017, Rostock, Germany
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5223-9/17/09...$15.00
https://doi.org/10.1145/3134230.3134233

The goal is to match these marks to the transitions given in
a description of the workflow, thus creating navigation cues
to browse video repositories of manual work. To evaluate
the performance of unsupervised clustering algorithms, the
automatically generated marks are compared to human-expert
created labels on publicly available datasets. Additionally, we
tested the approach on a novel data set in a manufacturing lab
environment, describing an existing sequential manufacturing
process.
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INTRODUCTION
Identifying steps of manual work either on real-time or off-line
recordings has the potential to support such work through dif-
ferent outputs. A possible approach to this problem, followed
in this paper, is to detect transitions between steps instead
of distinguishing what is actually executed. While this does
limit possible applications, since it will not allow to query for
particular activities, it could provide marks in concurrently
recorded video material to provide a first set of navigation
cues for later refinement. Possible areas of application include
laboratory experiments, preparing food, manual labor or any
kind of repetitive activity that follows a (semi-)fixed procedure.
The order and/or number of steps in the process may be known
beforehand, such that a classifier must only detect transitions
from one state to another. However, instead of detecting the
type of step executed at a particular point in time, as usually
done, we only try to detect the duration of each step - simplify-
ing the problem. Such an unsupervised approach, even though
it might be limiting, removes the necessity for labeled data.

This paper’s approach aims at an automatic detection of such
transitions based on inertial data recorded on the human body,
with simultaneous and synchronized video recording for vi-
sual inspection afterwards. Point-of-view video recordings
of manual processes have become easier to record, but tend
to be hard to browse, both due to their length and because
interesting marks in those videos are hard to find. An unsuper-
vised clustering of the body motion provides here a first index
into such repositories, e.g. being able to skip sequences where
there is little or no movement.

Figure 1 shows an example of the clustering approach applied
to a recording of wrist motion and documentation video data
of a DNA extraction experiment. Blue vertical bars indicate
transitions between clusters in the data, found via KMeans
clustering. The graph also shows the groundtruth clustering,
in the form of labeled actions during the process shown in
different background colors. Video stills from the recording
show the process at various points in time. The whole video
can thus efficiently be traversed by jumping from one tran-
sition mark to another. In an extended consideration of the
problem, the recognition of step transitions should be possible
regardless of the scenario or data provided, motivating the use
of unsupervised methods beyond their obvious advantage of
not having to hand-label training data.

The remainder of this paper is structured as follows: First, a
short survey of related research is compiled to situate the paper
amongst the current state of the art. Following this, we present
the system design, which is capable of efficiently solving the
problem of separating possible process steps. The system is
then applied to three real-world data sets that include video
and inertial data, including one new and thus far unpublished
one. An evaluation is then performed on these to gather recall
performance for different approaches. In the last sections, the
experiments’ results are discussed in-depth, and a summary of
contributions, conclusions, and a short outlook are given.

RELATED WORK
Inertial sensors as used in this work are a commonly used and
widely accepted method of sensing human motion for activity
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Figure 2. The Grtool pipeline. Each step represents an independent,
parallelizable module. Compare the supervised (top) and unsupervised
(bottom) pipelines, where the train and predict steps in the former are
replaced by the clustering step in unsupervised AR

recognition. IMUs can provide proper acceleration, angular ac-
celeration and magnetic field strength via integrated accelerom-
eter, gyroscope and magnetometer, respectively. IMUs are
easily available as standalone sensors and nowadays built into
most consumer wearables like smartphones or smartwatches.
In [5, 3] for example a smartphone is used to record IMU data
for use in daily life activity recognition, and [22] investigate
the feasibility of smartwatches for hand and finger gesture
recognition. [11, 2] on the other hand use a custom-made sen-
sor platform for AR, which additionally gives the opportunity
to use multiple sensor platforms in a small network to gather
data from various body positions at the same time like in [21].
Data collected from IMUs furthermore lends itself to the ex-
traction of a multitude of different features, most prominently
in time and frequency domain [20]. Raw data has however
also been used in research in some cases [21], especially if
realtime applications are investigated. With respect to classifi-
cation of motion gestures with inertial data, both supervised
and unsupervised (e.g. [9, 14]) methods have been used, with
unsupervised methods gaining popularity in recent years.

Detecting process steps to guide users through a workflow,
or for providing post-hoc recordings was attempted several
times already. RFID tags for example have been successfully
used to track the movement of manufacturing parts through-
out a process workflow [1, 19]. Another popular approach
is to use cameras and motion tracking algorithms [18, 17],
for example in factory or surveillance applications to track
activities. Recent work is even using projectors to augment a
users workflow in a process [7] to guide its users. A different
environment is the kitchen where meal preparation could be of
interest to health monitoring [23]. However, most aligned with
the idea of this paper is the GlaciAR system [10], an authoring
system for point-of-view videos based on object detection.
We however employ wrist motion to detect significant steps.
Another example is the wet lab support system proposed in
[16], which is able to automatically document an experiment
in a laboratory with a known protocol and wrist motion.

SYSTEM DESIGN
Since unsupervised methods often provide a multitude of tun-
able parameters that can greatly influence the outcome of the
clustering and respectively the quality of automated indexing
of video recordings, we propose a hyper-parameter evalua-
tion approach in which test recordings are used to find a best
parameter combination for unsupervised transition detection.
In order to easily and efficiently process large numbers of
parameter combinations, a lightweight tool geared towards
parallel processing is needed [15]. It is implemented as a Unix
command line utility which provides several largely indepen-



dent modules that can be employed by themselves or linked to
form an activity recognition pipeline (Figure 2). Furthermore,
grtool is based on the Matroska video format [12] and uses
audio tracks in conjunction with subtitles to store arbitrary,
labeled activity data. Grtool provides an interface for both su-
pervised (via GRT [8]) and unsupervised (via scikit-learn [13])
classification methods.

For unsupervised clustering, the experiments presented in
the next chapter use the KMeans clustering, agglomerative
clustering and gaussian mixture model (GMM) algorithms,
all of which are implemented in scikit-learn. The iterative
KMeans partition clustering algorithm provides a baseline for
unsupervised recognition as it is a basic, efficient and widely
used algorithm that can provide good results without much
parametrization. Agglomerative clustering on the other hand is
a bottom-up hierarchical clustering method that uses a certain
linkage type to determine similar clusters to merge. Lastly,
GMMs can be seen as a generalization of KMeans clustering,
where the cluster covariance is an additional variable, i.e. a
GMM fits a given number of Gaussian distributions to the data
and provides probabilities for each sample to be in a certain
cluster.

Classification with real-world data is not perfect, and noise in
the classification output is a common occurrence in activity
recognition. In most AR applications this does not largely
hinder the recognition of actions in general. However in our
scenario of unsupervised process step recognition, the clus-
tering output has to be filtered to robustly detect transitions
between states. We use a simple hysteresis filter to smooth the
output and thus prevent false state transitions when multiple
immediately concurrent samples are classified into different
clusters. The filter works in that it only changes its output
when a certain number of input samples in the future are the
same as the one it is currently regarding.

EXPERIMENTAL SETUP AND EVALUATION
To evaluate and compare the performance of the different
clustering methods, we carried out an evaluation on three
different data sets from independent sources. All three datasets
include labeled human motion data, along with some form of
video evidence as extra documentation.

1. DNA Extraction [16] dataset has 13 recordings of a DNA
extraction experiment performed in a biological experiment
laboratory setting. Motion data from a single wrist ac-
celerometer at 50 Hz is combined with videos from a fixed
camera above the experimentation area. Experiments in-
clude 9 process steps, which may occur multiple times in
one recording and in a semi-variable order.

2. CMU’s Kitchen - Brownies [4] dataset contains 9 record-
ings of participants preparing a simple cookie baking recipe.
Motion data from two arm and two leg IMUs was recorded
at 62 Hz. Video recordings from multiple angles, including
a head-mounted camera, are included as well. In total, the
recipes consist of 29 variable actions.

3. Prototype Thermoforming. A third dataset was recorded
by ourselves and consists of two recordings of a thermo-
forming process of a microfluidic ’lab-on-a-chip’ disk [6]. It

Figure 3. The third dataset in this paper uses video frames from a
Google Glass recording of steps in a thermoforming process (top), com-
bined with wrist accelerometer data from the same recording (bottom
timeseries plot), to extract the different process steps’ information (back-
ground colors in bottom plot).

Method win / feat / marg recall 1 / 2 / 3 F1-score 1 / 2 / 3
KMeans 80 / mean / 4 .92 / .88 / .95 .92 / .88 / .95
Agglo. 90 / time / 5 .93 / .88 / .95 .93 / .88 / .95
GMM 90 / mean / 3 .88 / .86 / .95 .87 / .86 / .95

Table 1. Top scoring parameter combinations over all data sets (1 / 2 / 3)
per method. The results show that these combinations have high scores
for all data sets, not just individual experiments.

combines IMU data at 50 Hz from a smartwatch and Google
Glass, and video recordings from the Google Glass. The
dataset’s process contains 7 fixed process steps in a known
order (see Fig. 3).

While the sensor setups across all three data sets are somewhat
heterogeneous, each data set provides data from a unique
scenario where linear processes are sequentially executed by
the subjects. The heterogeneous sensor setups also give a
challenging proving ground for the evaluation across all data
sets, which is described in more detail later.

The raw data from each data set is preprocessed before it is
given to the clustering algorithms. First, the data is stripped of
samples that are not or negatively labeled (e.g. labeled NULL),
which may considerably clean the input of noise, depending
on the data set and individual recording. The data is then
segmented by applying a sliding window of variable length,
without overlap between consecutive windows. For each seg-
ment, a number of features are extracted, specifically the mean
and variance of the segment, in addition to the min-max range
and the median.

After preprocessing and feature extraction the unsupervised
clustering algorithms are applied to the feature data: KMeans
and agglomerative clustering along with Gaussian Mixture
Models (GMM) are regarded for the experiments.For KMeans
and agglomerative clustering the results are evaluated per-
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Figure 4. Our approach matches individual activity labels (top: A, B,
and C) with clustered segments (bottom: 1, 2, and 3) to score transitions
as true positives, false positives or negatives.

participant, since no actual training is necessary, and for the
GMM clustering leave-one-participant-out cross-validation is
performed.

To score the performance of clustering, the time-series data
is clustered and the resulting cluster edges are compared to
the labeled ground truth. Cluster edges are regarded as pro-
cess step transitions and, within a certain margin, considered
true positives if they coincide with the transition of a ground
truth label. If however a ground truth transition is not met by
the clustering, a false negative event is registered, and vice
versa a false positive event if a cluster edge happens with no
corresponding ground truth transition (see Figure 4).

Furthermore, we argue that false positives might in a real-
world application not be as harmful as false negatives, since
generating additional indices in an archived video file may
overall not necessarily be a bad thing. Hence, when scoring
the experiments presented here, special attention is given to
the recall measure, which provides a performance measure of
how many of the ground truth transitions have a corresponding
cluster edge.

To find the best parameter combination for unsupervised tran-
sition detection, a hyper-parameter approach is applied, in
which each data recording is processed multiple times with
many parameter combinations. The parameters that are var-
ied per experiment run are the segmentation window length
between 10 and 100 samples, the extracted feature between
mean, variance and an aggregated time feature which com-
bines mean, variance, range and median features, and the
transition scoring margin mentioned above, between 1 and 5
samples. Each unique combination of these parameters is then
applied to each combination of dataset recording, modality
and clustering algorithm already described.

Since there is high variation in experiment parameters, each
of the three data sets can produce a very large amount of
scoring information. Different combinations of recording,
sensor modalities, segmentation parameter, extracted feature
and scoring parameter can yield hundreds of thousands of
separate scores. To bring structure to the results, they are first
regarded for each data set individually, followed by an overall
analysis of the scores. Summarized results can be found in
Table 1 and 2.
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Figure 5. Process benchmark of the CMU kitchen experiments (y-axis
log-scale). Durations (in sec) of only the clustering process (top), as
well as the whole experiment run (bottom), including preprocessing and
feature extraction, are shown. Benchmarked algorithms are KMeans
(blue), agglomerative clustering (red) and GMM (green).

To get more information on a possible best parameter set for
detecting process step transitions, the overall analysis of the
scores is done in a three-step approach:

1. The results of each method across the three data sets with
a recall score of ≥ 0.85 are intersected across the window,
feature and margin parameters, since these are the pipeline
parameters applicable to all methods and data sets. The
intersection removes duplicates.

2. The experiment runs where the three parameters are the
same as each parameter combination from the intersec-
tion are extracted, per method and data set and again with
≥ 0.85, which gives three new tables per parameter combi-
nation (for each data set).

3. The results are sorted and aggregated according to the recall
scores of the DNA extraction data set, since it provides a
large number of individual recordings, simple modality and
a relevant set of actions, which makes it the most useful
data set for measuring performance.

Table 1 compiles the highest scoring combinations of the re-
sulting table and thus shows the performance of each method
on all three data sets combined and not just the individual
scenarios, as in Table 2.

Figure 5 shows benchmarking data for the CMU kitchen data
set. The processing time of the clustering, or training in case of
GMM, was logged for each run of the experiment with differ-
ent parameters (top). Additionally, the runtime of each parallel
job is logged as well, showing the overhead that preprocessing
and feature extraction create in the pipeline. Note that both
graphs have a logarithmic y-axis scale. The recurring pattern
of higher and lower processing times stems from the way the
hyper-parameter approach iterates through possible combi-
nations of parameters. Some combinations result in higher



processing overhead, e.g. for GMM the higher dimensional-
ity when using all modalities at the same time results in very
costly operations. Summarizing the benchmark results also for
the other data sets, it can be seen that GMM performs on aver-
age much worse than KMeans, and agglomerative clustering
only slightly better than KMeans.

DISCUSSION AND CONCLUSION
Looking at individual top scoring experiment runs, there is a
parameter combination for each data set and each detection
method that can yield good recall scores for a robust detection
of process steps. Comparing best runs for the three data sets,
there is however no clear winner for the used method. Further-
more, segmentation window lengths of around two seconds are
set in all top scoring runs and thus seem to be the best choice
for this parameter, as is the mean feature which is sufficient
in most cases to yield good results. Table 1 further shows that
there are indeed parameter combinations that will yield good
results in all of the regarded scenarios.

The results show that even very basic clustering of the mean
acceleration of the wrist can already robustly distinguish be-
tween single steps in a linear process. This is a rather surpris-
ing result, since usually much more elaborate methods need
to be employed to provide good recognition results. However,
our goal was not to identify particular steps in a protocol but
simply detect significant changes which indicate a possible
transition to a different step. This is a much simpler problem,
hence the surprisingly good results from this rather basic ap-
proach. Still, our approach can provide transition marks for a
potential automatic labeling system that provides indices for
archival video footage or documentation, supporting skipping
over uneventful video segments with little changes to wrist
motion.

In addition, several other factors need to be considered which
may have influenced the results in a positive way. The applied
smoothing step after clustering for example removes much
uncertainty in the transitions, which may not be the case in
comparable work. This factor is even further reinforced by
the allowed margin of error applied when scoring the results.
Furthermore, the data sets used in the experiments were specif-
ically chosen for this application, i.e. they all provide clear
cut, distinct steps in a linear process. Dataset 3 also provides
very little variance, in individual process composition as well
as in overall recordings, which explains the especially good
results in this case. Another factor is the complete disregard
of NULL samples, i.e. samples where the original labeling
provides no classification. These samples were removed from
the input before clustering, giving the clustering algorithms
a very clean input. Noteworthy is also the fact that all three
clustering algorithms used in the unsupervised experiments
are in essence very similar, explaining the overall small vari-
ance in scores. GMMs can be seen as a generalization of the
KMeans method, where the cluster covariance is an additional
variable. The implementation of agglomerative clustering used
in the experiments applies ward linkage, which minimizes the
sum-of-squares error in each cluster, similar to the KMeans
algorithm.

Method modality win / feat / marg recall F1-score
KMeans - 80 / mean / 4 0.92 0.92
Agglo. - 90 / time / 5 0.93 0.93
GMM - 90 / mean / 3 0.88 0.87

KMeans l leg mag 100 / time / 3 0.97 0.97
Agglo. l leg gyr 100 / time / 3 0.97 0.97
GMM r arm acc 100 / var / 1 0.9 0.9

KMeans wrist acc 80 / mean / 2 0.96 0.95
Agglo. head acc 90 / time / 2 0.96 0.95
GMM wrist mag 100 / mean / 2 0.95 0.95

Table 2. Results for individual top experiment runs, per data set (from
top: DNA ext., CMU kitchen, thermof.). Feature extraction window
as number of samples (@50 Hz); Extracted feature is mean, variance
or time (time = mean/var/range/median); Transition scoring margin as
number of samples.

This system is still work in progress, and the next logical
step is to assess the usefulness of the generated marks. An
experiment where participants are asked to perform a manual
process, which is recorded with cameras and body-worn in-
ertial sensors is planned. Participants will later be asked to
cut this video into sequences, which represent the steps of the
protocol. We will then compare whether this cutting task will
be performed quicker if it is pre-cut with an automatic sys-
tem, or if such a pre-cut has detrimental effects. To facilitate
this usability study, we furthermore plan to extend the ther-
moforming prototyping data set to a more valuable size, and
eventually release it for open use in the scientific community.
Another point of future optimization are the classification and
clustering methods used in the experiments. Further optimiza-
tion beyond the absolutely necessary model parameters, like
number of clusters for the unsupervised clustering methods, is
planned for future work. While adding more varied parame-
ters and greater value ranges might yield better performance,
each added parameter variation multiplies the number of runs
by the size of the parameter range, so a balance has to be
found where the improvement in score still warrants higher
computational cost.
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