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ABSTRACT
Photoplethysmography (PPG) sensors have become a preva-
lent feature included in current wearables, as the cost and size
of current PPGmodules have dropped significantly. Research
in the analysis of PPG data has recently expanded beyond
the fast and accurate characterization of heart rate, into the
adaptive handling of artifacts within the signal and even
the capturing of respiration rate. In this paper, we instead
explore using state-of-the-art PPG sensor modules for long-
term wearable deployment and the observation of trends
over minutes, rather than seconds. By focusing specifically
on lowering the sampling rate and via analysis of the spec-
trum of frequencies alone, our approach minimizes the costly
illumination-based sensing and can be used to detect the
dominant frequencies of heart rate and respiration rate, but
also enables to infer on activity of the sympathetic nervous
system. We show in two experiments that such detections
and measurements can still be achieved at low sampling
rates down to 10Hz, within a power-efficient platform. This
approach enables miniature sensor designs that monitor av-
erage heart rate, respiration rate, and sympathetic nerve
activity over longer stretches of time.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mo-
bile devices; • Applied computing→ Health informatics;
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Figure 1: The utilized wearable PPG sensor module uses
the MAX86140/41 evaluation board, which combines a low-
power microcontroller, a Bluetooth LE transceiver, and a
sensing unit with two photodiodes, a green, and a yellow
LED (bottom right). The sensor unit faces the skin surface
to measure the scattering light, to infer the blood volume
changes in themicrovascular bed of tissue beneath the skin.
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1 INTRODUCTION
Wearable monitoring of heart rate has surged in the past
decade, allowing more representative ‘in vivo’ observations
in the user’s natural surroundings. With the advance of pho-
toplethysmography (PPG) sensor units in smartwatches and
other wearables, such sensor units have become smaller, less
invasive, and more comfortable to attach to the body. Due
to the optical measurement principle, these PPG sensors do
not require perfect attachment of electrodes on the skin,
though their data are known to suffer from ambient light
and changes through motion or pressure on the skin. Fur-
thermore, their reliance on high-intensity LEDs to illuminate
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the skin is far from energy-efficient, hindering lightweight
and wearable deployment for extended periods of time.

Current research in PPG is targeting in particular the accu-
rate detection and segmentation of pulses for heart rate (HR)
measurement and the extraction of the related heart rate
variability (HRV). The determination of this parameter even
enables to estimate the respiration rate (RSP) in terms of its
frequency, intensity, and amplitude. The aim of most studies
is to deliver results that approach the accuracy and speed of
electrocardiography (ECG) and clinical respiration monitors,
which represent the reference signals for HR and RSP pa-
rameters. Consequently, most approaches use high sampling
rates (SR) for a better temporal resolution, although those
do not lead to significant benefits regarding accuracy, but
increase the energy consumption of the system.
In this paper, we argue for using a wearable PPG sensor

for observing slower trends, across longer stretches of time,
by evaluating data that span minutes rather than seconds.
Using spectral analysis of minute-long signals, our aim is to
extract the different oscillations present in the PPG signal
that correspond to heart rate (HR), respiration rate (RSP),
and a third range which has been identified to represent
sympathetic nerve activity (SNA). We specifically investigate
how the PPG sensor’s sampling frequency (SR) will affect
such estimates, since the LED-driven measurements are a
major hurdle for wearable deployments.

Our aim is, thus, to focus specifically on obtaining correct
estimates for average physiological signals, efficiently mea-
surable with a small and wearable PPG sensor. Hence, we
are aiming for the application of unobtrusive devices such as
smart patches, to record measurements in long-term studies.

Systolic point

Dicrotic notch

Dicrotic peak

Diastolic point

Figure 2: The PPG signal of a single cardiac cycle, mea-
sured with green light at 512Hz sampling rate, showingmir-
rored run due to reflective measurement principle. Note the
characteristic features, diastolic and systolic point, dicrotic
notch and peak of reflected wave from lower extremities
and aorta, as well as the spikes of interfering noise.

The importance of observing large time windows of PPG
data is increased by recent commercial PPG sensors, which
optimize the timing of the sensors’ LEDs exposure consid-
erably and as such enable sparse, and as a consequence
energy-efficient, data sampling. To illustrate our approach,
we present a prototype design that integrates such a recent
PPG sensor based on the MAX86140/41 in a microcontroller-
driven evaluation system, and demonstrate the impact of the
sampling rate on its overall power efficiency.

This paper’s contributions are threefold:
• Spectral analysis over minute-long data is detailed as a
promising wearable method to estimate heart rate and
respiration rate, as well as the presence of sympathetic
nervous activity. It is limited to estimating averages over
minutes, but works on low sampling rates, allowing long-
term operation on light-weight devices.

• We present a first study on a 42-person benchmark dataset,
in which the impact of the sampling rate of PPG data is
evaluated on the accuracy of the estimation of heart rate,
respiration rate, and sympathetic nervous activity.

• We present a second study on data from a wearable pro-
totype using a novel low-power PPG sensor, showing the
specific advantages of our approach over larger windows
of lower-frequency PPG samples.

The remainder of our paper is structured as follows:
We start with presenting the background concepts of pho-
toplethysmography (PPG) and related work on estimating
parameters such as heart rate (HR), respiration rate (RSP),
and the presence of sympathetic nerve activity (SNA). A
wearable PPG system design is then presented, which uses
a recent integrated PPG sensor and a low-power microcon-
troller to illustrate the effects of our proposed method on an
actual system. After proving details on our signal analysis
approach, we present two studies: One on a clinical bench-
mark dataset of 42 individuals and a second study with 6
individuals taken with the presented wearable PPG system.
We conclude with the results from these studies, as well as
several observations made during the second study.

2 THEORY AND RELATEDWORK
Before we specify the design of our wearable PPG sensor
on the hardware level, we first present related work and
introduce into the theoretical concepts and mechanisms of
photoplethysmography (PPG), the determination of heart
rate (HR) and respiration rate (RSP), the identification of
activity in the sympathetic nervous system (SNA), and the
central issue of the sampling rate (SR).
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Photoplethysmography
Pulse oximetry is a proven and tested method in clinical
settings, where it is used to non-invasively obtain heart
rate (HR) and peripheral oxygen saturation (SpO2) of pa-
tients. It is based on photoplethysmography (PPG), an optical
principle for the measurement of blood volume changes in
the microvascular bed of tissue beneath the skin. In the tra-
ditional setup, an LED emits light into the skin which is then
measured on the opposite side of the tissues. Consequently,
the measure represents the amount of light that has not been
absorbed within. Instead of a clip at the fingertip, typical
for this transmission measurement, modern wearables use
a variation of this method in which LED and photodiode
are placed close to each other, on a single side. Thus, not
the absorption, but the scattering of light within the tissues
is measured at the skin surface. Consequently, the signal
sequences of the principles show a mirrored run and the sys-
tolic peak being either the maximum for the transmissive or,
as depicted in Figure 2, the minimum for the reflective prin-
ciple. While the signal of transmissive PPG is proportional
to the detected blood volume, the one of the reflective PPG
shows an antiproportional signal sequence due to a larger
blood volume that is absorbing the emitted light [10].

Depending on the light’s wavelength, variations in differ-
ent layers of the tissue are captured: Blue and green light
measure the blood volume changes in the superficial capillar-
ies of the uppermost epidermis, yellow reaches the arterioles
in the dermis, and red or infra-red even reach the small ar-
teries in the hypodermis [1, 13]. In contrast to the arteries
and arterioles, veins do not exhibit observable changes in
blood flow and, just like other passive tissues, add another
DC component to the detected signal.

Determined by the systolic and diastolic phase of the car-
diac cycle, the heart generates a pulse wave that travels
through the body as a difference in blood pressure and vol-
ume. This is, therefore, measurable with PPG and enables
the estimation of HR by identifying and counting the aver-
age pulse beats per minute. Due to the loose deployment
of the sensors on the user’s skin, artifacts from motion and
differences in pressure can be expected in long-term ‘in vivo’
measurements, making the reliable measurement more chal-
lenging. However, as summarized in [16], research already
showed successful approaches to identify artifacts and to
minimize their influence [6, 11].

Heart Rate and Respiration Rate
Initially, PPG sensors have been utilized to just measure the
pulse beats and, thus, to infer HR by counting the peaks and
averaging their quantity over one-minute intervals. Research
then focused on minimizing the influence of motion arti-
facts to make the measurements increasingly reliable. Apart
from algorithms which improve the robustness of heart beat

detection, research is recently aiming for extracting further
information from PPG signals. Besides the estimation of the
peripheral oxygen saturation (SpO2), recently the estimation
of the respiration rate (RSP) has been spotlighted.
On the one hand, breathing results in fluctuations of the

blood pressure, the so-called respiratory-induced intensity
variation (RIIV), which volume changes are observable in
PPG signals as an oscillation at the RSP frequency. On the
other hand, respiration appears as slight variations in heart
beat distance, the so-called respiratory sinus arrhythmia (RSA).
The phenomenon is observable at every living individual
and is not subject to diseases. While it is also referred as
respiratory-induced frequency variation (RIFV), the more
common name heart rate variability (HRV) just describes the
varying time intervals between consecutive pulse peaks. Al-
though the parameter is of interest for the medical diagnose
of diseases [14], in research for wearable devices the next
stage still focuses on its use for the reliable estimation of
RSP [2–4, 8]. Because the signal amplitude of PPG signals is
more interfered by baseline wandering and motion artifacts,
to date, HRV prevailed as a reliable measure of RSP due to
those interferences having less impact as long as the peaks
are effectively detected and located.

Sympathetic Nerve Activity
The autonomic nervous system of the human consists of two
parts which regulate the body’s unconscious activity and act
complementary to each other. While the parasympathetic
nervous system with a slower response controls the body
at rest and is responsible for the rest and digest, the sympa-
thetic nervous system with a faster response controls the
shortening reactions of fight or flight in case of a threat.
As one of the major problems of today’s society is sug-

gested to be constant stress of its individuals, resulting in an
outbalance of the sympathetic part, the examination of this
development is more important than ever. The sympathetic
nerve activity (SNA) plays a crucial role in the monitoring of
cardiovascular diseases such as hypertension, heart attacks,
cardiac arrhythmia, and congestive heart failure. Though,
the explicit measurement of the SNA is difficult, because
only its consequences, such as a constantly higher HR or
a permanently increased sweating, are observable without
complex medical equipment. Hence, a method to explicitly
measure SNA, embedded into small and light-weight wear-
able devices, would be highly beneficial to observe stress in
large-scale and long-term studies.

Fortunately, the presence and amplitude of low-frequency
oscillations in the arterial blood pressure, spontaneously
occurring in conscious humans, have been shown to correlate
with SNA [15]. In this way, the SNA is likely observable in
unfiltered measurements of present PPG sensors, but needs
further investigation to be well-understood.



iWOAR ’18, September 20–21, 2018, Berlin, Germany F. Wolling and K. Van Laerhoven

Sampling Rate
The temporal resolution of a PPG measuring sequence is
dictated by its sampling rate (SR), represented by the num-
ber of emitted flashes that are scattered within the tissue
and, finally, detected by a photodiode. The trend to incon-
siderately increase this SR frequency prevailed for a while.
On the one hand, it has been motivated by the filter-based
stabilization of the average which statistically represents
the expected value, smooths the slope, and thus suppresses
occurring noise. On the other hand, the interpretation of the
heart rate variability (HRV) requires a higher SR to precisely
locate the pulse peaks and to measure the difference in time
interval between consecutive peaks. Figure 3 illustrates the
relation between the SR and the temporal resolution which
is required for an accurate HRV estimation.
Due to the high energy consumption and the desire of

small and long-lasting wearable devices, research again con-
centrates on the reduction of the SR, to reach its neces-
sary minimum. Thus, the fundamental sampling theorem of
Nyquist-Shannon returns to mind, which defines the possible
minimum SR that is necessary to reliably capture the desired
signal frequency. However, in the raw measurement data,
the interfering noise is not filtered and thus not band-limited.
Consequently, a higher SR is required to still correspond to
the guideline of the sampling theorem. However, at a certain
point, the benefits of a higher SR stagnate while the energy
consumption still increases constantly.
In their approach, De Giovanni et al. [7] examined the

energy-efficient estimation of HR based on a single-sided
amplitude spectrum analysis, applying the FFT on short win-
dows of PPG data. The algorithm removed the existing mo-
tion artifacts without the reconstruction of a noise-free signal
or adaptive filtering. Additionally, by lowering the SR from
125Hz to 31.5Hz they were able to reduce the required mem-
ory to 5.8 kB. At the same time, the average absolute error
increased only from (1.27 ± 0.91) bpm to (2.24 ± 1.01) bpm.
A similar approach has been examined by Choi et al. [5]

which evaluated the requiredminimum SR to reliably analyze
the HRV. The original 10 kHz PPG signal has been sampled
down to the range of 5 kHz to 5Hz. Afterwards, the signal
sequences have been analyzed in time and frequency domain,
and then compared to the reference ECGmeasurements with
a SR of 10 kHz. As a result, it is stated that a SR beyond 25Hz
does not show significant difference to the lower ones and,
thus, higher SRs do not contribute to the reliability of PPG
for the HRV estimation.

3 WEARABLE PROTOTYPE
For the practical evaluation of our approach, we decided to
use the MAX86140/41 and its evaluation board as an inte-
grated optical data acquisition system. It is a state-of-the-art
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Figure 3: Illustration of downsampling of the original PPG
signal sequences, with the channels of green light (left) and
yellow light (right), from 512Hz (top) down to 128, 32, 16, 8,
and 4Hz (bottom). With lower frequency, the temporal res-
olution decreases and an accurate localization of the pulse
peaks is not possible anymore.

low-power platform that is suitable as a light-weight and
wearable PPG-sensing system, presented in Figure 1.

Its central microcontroller is aMAX 32620 ARMCortex-M4
with floating point unit. It includes 2MB of flashmemory and
256 kB of SRAM to collect the measurements. Readings can
also be transmitted via the nRF52832 Bluetooth LE transceiver
for intermittent further processing and long-term offline stor-
age. The MAX86140 itself provides three programmable 8 bit
LED driver DACs for pulse modulation and a low-noise ana-
log front-end (AFE) with a single input channel to a 19 bit
sigma-delta ADCwith integrated filter for 50 and 60Hz inter-
ference. It provides sampling rates (SR) from 4096Hz down
to 8Hz. Furthermore, the manual triggering enables individ-
ual sequences, even lower than 8Hz. The option of using a
low SR in combination with diverse energy saving modes
and a proximity function to detect skin contact enables the
use of this hardware design in low power applications such
as ours. The influence of ambient light is compensated and
abrupt changes can be rejected by a picket fence detect and
replace algorithm for value estimation.
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As a result, the modules provide stable signals, but still
allow to obtain unfiltered, raw PPG measurements. Those
enable the unconstrained offline analysis of recorded signals,
including the application of possible filters without anticipat-
ing the necessity of preprocessing stages such as a low-pass
filter for the elimination of baseline wandering.
Essential for the PPG measurement is the selection of a

suitable light source. Due to blood’s absorption characteristic,
green and yellow visible light spectrum exhibits the largest
modulation depth in the detected signal and, hence, provide
the best signal-to-noise ratio [16]. The prototype provides
a green LED (LT PWSG) with λд = 528 nm and a yellow,
amber-colored LED (LY P47F ) with λy = 590 nm. To detect
the small variations of the scattered light, the system utilizes
two photodiodes (VEMD5010X01) with a sensitivity suitable
for visible and near infrared light.
In our experiments, we decided for the following mea-

suring parameters: During each sample, the LEDs are suc-
cessively turned on, driven with a current of 4.9mA. After
a settling time of 12 µs the reflected light is integrated for
14.8 µs and, finally, measured by the ADC. Although the mea-
surement time can be extended up to 117.3 µs, resulting in
a higher signal-to-noise ratio, we decided for the described
default configuration due to a significant lower energy con-
sumption, nevertheless, still providing a sufficient modula-
tion depth for most skin types.

However, the duty time of 14.8 µs already results in a time-
averaged current of 262.64 nA

Hz . Thus, the activation of each
discrete LED incorporates a relevant portion of the proto-
type’s energy consumption: 1.076mA at 4096 sps; 134.5 µA
at 512 sps; 16.8 µA at 64 sps; 2.1 µA at 8 sps. Though, not only
the LEDs’ demand increases linearly with the applied SR fre-
quency, also the analog front-end (AFE) consumes a rising
current, ranging from a few µA up to about 1170 µA. So just
the PPG module’s sensor front-end with a single LED con-
sumes about 2mA at the maximum SR of 4096 sps, compared
to less than 5 µA at about 10 sps. In addition, a higher SR has
large impact on the microcontroller’s busyness, resource and
memory usage, again resulting in a larger dissipation.

4 EXPERIMENT I:
PPG ANALYSIS ON A PUBLIC DATASET

To evaluate our approach, we first validated our assumption
regarding the effect of SR on spectral analysis of PPG data
with a publicly available dataset that has been recorded from
a highly variable set of 42 users.
Although numerous public datasets for HR estimation

from electrocardiograms (ECG) are available in databases
like the PhysioBank [9] repository, raw photoplethysmo-
graphy (PPG) data is not as easily found. We used the IEEE
TBME benchmark dataset based on the CapnoBase database
as presented and described in [12]. It is one of the few publicly

available clinical datasets that contains synchronized ECG,
PPG, and respiratory CO2 recordings from a large variety of
persons. The dataset was originally devised for examining
RSP estimation algorithms from raw PPG signals for 42 per-
sons, for a duration of eight minutes each and sampled at
300Hz. The PPG readings are complemented with reference
CO2 readings, ECG readings, and artifact labels validated by
an expert rater. Figure 4 shows a one-minute segment of raw
ECG, CO2 RSP, and PPG data from this repository, and our
frequency analysis for the said segment.
In a first pass, possible artifacts in the dataset are elimi-

nated by selecting, for each person, a one-minute subset of
data for which no artifacts are present in the ECG, CO2, or
PPG signals. These artifacts are annotated in the benchmark,
using the Incremental-Merge Segmentation algorithm [11],
which detects short-term artifacts by identifying abnormally
large and clipped pulses. Subsequently, the DC component
in raw PPG data is removed through a high-pass filter with
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Figure 4: Analysis of an excerpt from the benchmark
study [12] taken from 42 individuals. Top: Original time-
series over minute from wearable ECG, respiration (CO2),
and PPG sensors, all sampled at 300Hz. Middle: Frequency
spectrum of PPG data (green), annotated with frequencies
and dominant frequency in heart rate (red) and respiration
(grey) from the ECG and CO2 data respectively. Occurrence
of low-frequency processes typical for sympathetic nerve
activity. Bottom: Power spectral density plot of PPG data
with default parameters for a Welch periodogram.
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a cutoff frequency of 0.01Hz. Spectral analyses is performed
using the Welch averaged periodogram method: The PPG
timeseries are divided into 50 % overlapping 60 s segments,
computing a modified periodogram for each segment, and
averaging the resulting periodograms. The segments are
Hanning-windowed, to minimize the first sidelobe of the
frequency response, and Fourier transformed using FFT. The
range of the expected RSP and HR frequencies is as in [12]
defined as 0.067-1.08Hz or 4-65 cpm for RSP and for the HR
a similar search window that reaches up to 3Hz or 180 cpm.
For the calculation of the average frequencies for both HR
and RSP, the frequencies with maximum power within the
respective ranges are then identified. For SNA, the area un-
der the power spectrum is computed for the low frequency
range from 0.04 to 0.15Hz [2].
To study the effect of the SR of PPG on the detection

of HR, RSP, and SNA, we systematically removed intermit-
tent samples from the original 300Hz data, down to 2Hz.
Figure 5 shows the results for the recovery HR and RSP, us-
ing a range of distance thresholds from 0.005Hz up to 0.1Hz.
The predicted frequency is marked as correct if it is within
this threshold from the ground truth, and false otherwise.
Overall, the detection of the RSP around 80 % is lower than
the HR around 90 % for the same thresholds. The detection
for the HR and RSP accuracy can also be seen to deteriorate
rapidly after reducing the SR to 4Hz.

5 EXPERIMENT II:
PPG ANALYSIS ON EXPERIMENTAL DATA

After the basic evaluation of our approach, based on a pub-
licly available PPG dataset, in a second experiment, we ana-
lyzed and evaluated experimental data from the previously
presented wearable PPG sensor system.

Experimental Setup
For the experiments, besides the PPG sensors themselves
also other sensors have been utilized to provide ground truth
information about the actual RSP, but also to detect mechan-
ical disturbances. The recordings have been analyzed offline
on a computer. To provide a matched data base, the sensors
have been synchronized with specific gestures.

Applied Sensors. Primary device is the previously pre-
sented wearable sensor module based on the MAX86140/41
that has been utilized to record raw PPG data at the right
wrist. This position has been chosen, because it is the most
common position for wearable devices such as fitness track-
ers and it is usually perceived as rather unobtrusive. Further,
we employed the onboard accelerometer BMA280 to sup-
port the identification of occurring disturbances. Besides the
elimination of motion artifacts, this even enabled to examine
the mechanical influence of breathing, as the arm is slightly
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Figure 5: Accuracy for the detection of respiration rate (left)
and heart rate (right) from the PPG readings, while varying
the sampling rate from the sensor’s original 300Hz down
to 2Hz. The different lines represent the results using dif-
ferent thresholds to establish whether a correct prediction
was made. They are measured in Hz as the maximum ab-
solute distance between prediction and ground truth. Note
that reducing the sampling rate to as low as 18Hz or 9Hz
has a moderate to minor effect, with a more severe impact
for the estimates of the respiration rate.

displaced with every thorax movement. To gather ground
truth information about RSP, a secondary sensor module has
been attached below the chest’s left pectoral muscle, close to
the heart. It focuses on the acceleration that is changing due
to the direct thorax expansion and, consequently, enables to
infer the RSP. The position has been chosen to additionally
test the PPG principle at this position in foresight for the use
in smart patches. However, the chest strap of the secondary
device has been perceived as unhandy and uncomfortable,
and was not applied in later study experiments. Instead, a
time-of-flight (ToF) depth camera has been utilized to re-
motely measure the respiratory movements of the thorax.
This measurement principle has been validated in detailed
respiratory experiments and showed high accuracy and reli-
ability (see Figure 6). The two wearable modules recorded
the measurements of the two PPG channels, green and yel-
low light, the ambient light intensity, and the acceleration
in three axes at a SR of 512Hz. For both PPG channels, the
influence of ambient light has automatically been detracted.
Due to the slower frame rate of the depth camera, the RSP
reference signal is recorded at about 30Hz.

Synchronization. The PPG sensors and accelerometers are
synchronized onboard. However, the two wearable devices,
attached to wrist and chest, as well as the external depth
camera still have to be synchronized among each other. To
link the wearable modules, their casings are tapped against
each other to generate significant peaks in the acceleration.
Subsequently, a fast waving gesture, of the armwith attached
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Figure 6: Validation of paced breathing at 0.25Hz (15 cpm). Measurement of thorax expansion with ToF depth camera (top),
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Figure 7: Analysis of PPG data at the wrist during paced breathing. Time series of 20 s raw PPG data (top left), frequency spec-
trumof full 120 s rawdata (top right), linear interpolatedHRV from irregularly sampledmaximumpeak-features (bottom left),
and respective frequency spectrum (bottom right). Top right: Significant SNA (green area), observable RSP (red area), and HR
(yellow area). Bottom right: Significant RSP (red area).
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Figure 8: Analysis of PPG data at the chest during paced breathing. Time series of 20 s raw PPG data (top left), frequency spec-
trumof full 120 s rawdata (top right), linear interpolatedHRV from irregularly sampledmaximumpeak-features (bottom left),
and respective frequency spectrum (bottom right). Top right: Observable SNA (green), significant RSP (red), and HR (yellow).
Bottom right: Significant RSP (red).
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sensor module, through the measurement window, spanning
the chest of the detected subject, enables to link the depth
camera signals with the acceleration of the wearables. By
executing this procedure at the beginning and the end of the
recordings, also the clock drift of the particular devices can
be rectified which is important for longer time spans. Unfor-
tunately, the PPG pulse signals themselves are inapplicable
to synchronize the wearable sensor modules. The mechani-
cal propagation of the pulse wave through the arteries is too
slow and would result in a considerable inaccuracy due to a
noticeable difference in time of arrival (ToA).

Applied Filters and Algorithms
Hereafter, the applied filters and algorithms are described
which have been utilized to extract the desired parameters
HR, RSP, and SNA from the recorded signals. At first, the
parameters are estimated regarding the approach of this re-
search, based on the frequency spectra of the fast Fourier
transform. Then, those are compared to the estimates that
have been extracted on the traditional way, based on estab-
lished and accepted standard techniques.

Fast Fourier Transform. According to the concept of our
approach, the recorded raw measuring sequences of the PPG
sensors are converted from time into frequency domain us-
ing the fast Fourier transform (FFT) algorithm. Essential
for this transformation are the window parameters of time
spanT and number of samples N , joined in the SR frequency
fS =

N
T . For a single-sided spectrum, N results in the respec-

tive number of bins N
2 . Those capture a certain frequency

range which is defined by the frequency resolution ∆f =
fS
N .

However, according to the theorem of Nyquist-Shannon, the
covered frequency band cannot exceed fmax =

fS
2 .

While the limit fmax does not affect the measured signal
frequencies of HR, RSP, and SNA, the resolution ∆f is crucial
for the accurate estimation of the expected values. Conse-
quently, for a better ∆f , the SR has to be increased already in
time domain. Though, as the accuracy converges quickly, the
improvement of ∆f by increasing SR gets negligible soon.

Heart Rate and Peak Position. The most fundamental mea-
surement of PPG is the HR. To extract this parameter from
the measured signals, a standard peak detection algorithm
has been applied. It is common even though not efficient,
but ensures the independency from specific concepts and
algorithms. Thus, it returns not only the count of peaks per
window length, but also their position which is basic require-
ment for the subsequent parameters. To achieve a reliable
locating of the pule peaks, the algorithm has been config-
ured considering the standard HR frequency range between
0.67Hz and 3.67Hz respectively 40 bpm and 220 bpm [7].
Due to optimal conditions of the selected data windows
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Figure 9: Accuracy for the detection of respiration rate (left)
and heart rate (right) from the PPG readings, while varying
the sampling rate from the sensor’s original 512Hz down
to 2Hz. The different lines represent the results using dif-
ferent thresholds to establish whether a correct prediction
was made. They are measured in Hz as the maximum ab-
solute distance between prediction and ground truth. Note
that reducing the sampling rate has only minor effects for
respiration rate and a more severe impact for heart rate.

without motion artifacts, this approach is sufficient. Before
the peak detection is executed, the signal is filtered with a
forward-backward, linear phase, 2nd order band-pass filter
to reject baseline wandering and noise below 0.025Hz and
beyond 10.0Hz. This filtering would not be necessary for the
specialized approach of Karlen et al. [11] which is popular for
wearable devices and more reliable in real life applications.

Heart Rate Variability and Respiration Rate. Due to respira-
tory-induced intensity variation (RIIV), it is possible to ex-
tract RSP directly from the fluctuations in the raw PPG sig-
nals. Though, because this measure is very sensitive to mo-
tion artifacts, the measurement of the related phenomenon
RSA through HRV is currently the most common way. The
slope of HRV is derived from the positions of the pulse peaks
which have been used to generate the envelope function of
the raw PPG signal. The maxima respetive the diastolic base
points represent an irregularly sampled sequence of peak-
features that is resampled using linear interpolation [4, 12].

Sympathetic Nerve Activity. For the activity of the sym-
pathetic nervous system, the area under the curve of the
frequency spectrum between 0.04 and 0.15Hz has been com-
puted and compared to those of the other measurements.
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6 RESULTS AND DISCUSSION
In the following, we briefly summarize, compare, and discuss
the results of the particular experiments.

Experiment 1. A typical time series of the benchmark dataset
is shown in Figure 4 and contains the three channels of ECG,
RSP CO2, and PPG. Although the patients did not perform
paced breathing at a specified frequency, the respiration sig-
nal still shows a uniform, continuous signal and a steep,
significant peak in its frequency spectrum. The heart beat is
distinctively observable in both, the ECG and the PPG sig-
nals. The superimposing respiratory-induced intensity varia-
tions (RIIV) are simultaneously observable in both channels,
however, their amplitude is clearly lower than the primary
pulses. As a result, the frequency and power spectra show
significant peaks at the fundamental frequencies of HR and
RSP within the mentioned frequency bands. The peak of the
RSP CO2 measurement is congruent with the RSP-associated
peaks in the ECG and PPG channels, but those are less dis-
tinct. In contrast, the dominant frequency peak of HR is
several times larger than the one of RSP due to its smaller
amplitude of the superimposing RIIV.

The results of the downsampling are presented in Figure 5
and show a relatively stable accuracy down to about 9Hz
SR for both HR and RSP with about 90 % and 80 % correctly
identified dominant frequencies.

Experiment 2. In contrast to the preliminary benchmark
study, our subjects performed paced breathing at 0.25Hz. As
is observable in Figure 6, all three reference measurements,
either of the time-of-flight (ToF) depth camera or of the on-
board accelerometers, show a similar signal, resulting in a
significant peak at the desired RSP frequency of the spectra.
Thus, the ToF depth camera provides reliable reference mea-
surements and is a valid replacement for the obtrusive chest
strap that has been used in the first experiments. Although
still observable at the wrist, the influence of the respiratory
motion due to thorax displacement is negligible.

The Figures 7 and 8 show exemplary time series of the PPG
sensors attached to wrist and chest. Obviously, the chest sen-
sor’s signal is considerably superimposed by RIIV. Because
the pulse peaks are clearly visible and no harsh motion ar-
tifacts are observable, direct mechanical influence of the
thorax displacement on the signal can be excluded. In con-
trast, the PPG signal at the wrist does not contain obvious
superimposition from RIIV. Instead, a low frequency compo-
nent is visible, which is not noticeable at the chest. Analog
to the observations in time domain, the frequency spectra of
the sensors show significant peaks for RSP at the chest and
for low frequencies at the wrist. Both spectra show scattered
peaks around the actual HR, though their distributions are
neither similar nor comparable in width and shape.

Due to the phenomenon of the respiratory sinus arrhyth-
mia (RSA), the analysis of the feature-based heart rate vari-
ability (HRV) reveals the RSP signal at both measurement
positions, at the wrist as well as at the chest. Both curves
swing around the average inter-beat distance, about 1 s in
this case, but exhibit a different phase. The resulting peak of
the RSP dominant frequency is significantly observable in
both HRV spectra. In contrast, the HR frequency band is not
occupied at all. While the spectrum of the wrist’s raw data
showed a distinct increase within the low frequency range,
this frequency band is just unremarkable in the HRV spectra
of both sensor positions.

The results of the downsampling are presented in Figure 9
and show a relatively stable accuracy down to about 4Hz SR
for both HR and RSP. The average accuracy spreads around
80 % for HR and 70 % for RSP.

Discussion. Both experiments showed the feasibility of
inferring HR and RSP from frequency spectra at reduced SR
without losing reliability and accuracy. Of course, the ag-
gregation of the information in a minute-long measurement
window and the calculation of its average results in a coars-
ening, but the resulting resolution is usually sufficient for
long-term observations. In general, the RSP frequency can be
extracted from both spectra, based on the raw measurements
or the HRV information. Instead, the HR itself can only be
derived from the raw signal’s spectrum. Due to the paced
and, therefore, constant RSP frequency in the second study,
the dominant frequency was extraordinary significant and
easy to extract. Variations in breathing and the change of the
fundamental RSP frequency within a measurement window
spreads the frequency components and, thus, flattens the
peaks. This behavior is observable for HR at which the slight
frequency variations of RSA generate a broad distribution
with side lobes according to the swing of the HRV signal.

7 CONCLUSIONS
We have presented a method to obtain information through
spectral analysis of photoplethysmography (PPG) data, which
we argue is particularly suitable for wearable and long-term
monitoring as it allows sampling at considerable lower fre-
quencies. The wearer’s heart rate (HR) and respiration rate
(RSP) are essentially calculated by observing dominant fre-
quencies in their respective frequency bands. Additionally,
the activity of the sympathetic nervous system (SNA) is in-
ferred by capturing the area under the curve in the character-
istic low frequency band. Although the presented methods
do not provide detailed, peak-specific identification and seg-
mentation, which is what many state-of-the-art approaches
currently aim for, it does lend itself well for energy-efficient
PPG monitoring and solutions that need to be light-weight
and wearable over longer stretches of time.
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We presented a design around a modern PPG sensing unit
to illustrate that, despite several features such as detection
of artifacts and motion, the high sampling rates (SR), which
are currently common in PPG sensing, represent a consider-
able bottleneck for such systems. We also show that spectral
analysis can be implemented on current systems, as it de-
pends largely on the fast Fourier transform (FFT) to divide a
window of PPG data into its frequency components. Even
for minutes of data, as required by our method to observe
low frequencies of sympathetic nerve activity (SNA), this is
achievable in off-the-shelf hardware.
In two studies, we have shown that the PPG sampling

rate (SR) can indeed be reduced to 10Hz, without signif-
icant deterioration of the detection performance of heart
rate (HR) and respiration rate (RSP) as well as the inferring
of sympathetic nerve activity (SNA). In a benchmark dataset
with PPG data from 42 highly variable individuals with a
wide variety of HR and RSP, we have shown that RSP was
accurately detected in around 80 % of all cases, even when
varying the SR from originally 300Hz down to 9Hz. HR
was accurately detected at almost 90 % of all cases under
the same conditions. In a second study, we used the data
from the presented PPG sensing unit, from 6 individuals that
performed paced breathing at 0.25Hz respectively 15 cpm.
Similar accuracy performance was detected for these data
as well, with a slightly better performance for the lower SR
down to 4Hz. In both studies, no significant indication of
sympathetic nerve activity has been observed, however, this
specific topic demands for more detailed research.
While the second study particularly confirmed the feasi-

bility of our approach for the implementation on wearable
systems, the first study showed its reliability and accuracy for
similar data recorded from real patients without paced respi-
ration. It is important to note, though, that the influence of
motion has been excluded in both cases. Next, the approach
has to be evaluated in a non-stationary environment and,
preferably, with an implementation which already enables
long-term recordings in everyday life. The final effectiveness
and yield have to be determined with a suitable low-power
microcontroller, where the use of advanced filters and more
efficient FFT derivatives such as the Goertzel algorithm can
further improve performance and energy efficiency.
The recorded datasets used in this paper’s studies, along

with all python scripts and annotations will be available for
download to support reproducibility of our experiments on:
http://ubicomp.eti.uni-siegen.de
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