Using Wrist-Worn Activity Recognition
for Basketball Game Analysis

Alexander Holzemann®
University of Siegen
Siegen, North Rhine-Westphalia, Germany
alexander.hoelzemann@uni-siegen.de

ABSTRACT

Game play in the sport of basketball tends to combine highly
dynamic phases in which the teams strategically move across
the field, with specific actions made by individual players.
Analysis of basketball games usually focuses on the locations
of players at particular points in the game, whereas the cap-
ture of what actions the players were performing remains
underrepresented. In this paper, we present an approach that
allows to monitor players’ actions during a game, such as
dribbling, shooting, blocking, or passing, with wrist-worn
inertial sensors. In a feasibility study, inertial data from a
sensor worn on the wrist were recorded during training and
game sessions from three players. We illustrate that common
features and classifiers are able to recognize short actions,
with overall accuracy performances around 83.6% (k-Nearest-
Neighbor) and 87.5% (Random Forest). Some actions, such as
jump shots, performed well (+ 95% accuracy), whereas some
types of dribbling achieving low (+ 44%) recall.
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Figure 1: A basketball player while dribbling and shooting
(top), the raw inertial sensor data (middle plot) with classi-
fied sequences (bottom plot).
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1 INTRODUCTION

Monitoring sports activities is a well-known field of appli-
cation for human activity recognition systems, with a large
number of possible use cases for recognizing and analyzing
sport activities. In this paper, we introduce an approach for
recognizing different kinds of activities for basketball specif-
ically, from wrist-worn inertial sensor data. For this purpose,
data has been collected during the training of a local amateur
team from three participants using an Inertial Measurement
Unit (IMU) sensor.

We annotated the gathered IMU data in five particularly
challenging classes: low dribbling (1d), crossover (co), high
dribbling (hd), jump shot (js) and a void class for less rel-
evant actions, and used a supervised learning approach to
examine how distinctive these motion classes are. With fur-
ther development, our aim is to recognize more activities
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like passing and screening or player movements so that such
detectors can reconstruct, visualize or analyze crucial actions
that appear during a basketball game.

2 RELATED WORK

Many studies that were carried out in the last years have
shown that traditional machine learning methods are abso-
lutely capable of fulfilling the requirements for well-selected
activity recognition tasks. The following will discuss activ-
ity recognition approaches that were presented for sports
activities in particular.

Scientific work in which wearable sensors were used to
record motion data in sports is available for many sports.
These include swimming [1], table tennis [2], skateboarding
[5], ski jumping [6], running [7], home exercises [8], cricket
[9], climbing [10], basketball [13], dressage [17], tennis [19],
football [20] as well as activities of daily-living [4].

Though due to further developments of wearable technolo-
gies we are now able to gather data from many sensors only
by wearing just a single gadget. As a consequences, nowa-
days, researchers are meeting these challenges by using data
from wearable sensors for supervising movements. For exam-
ple [13] developed a new sensor system, which is equipped
with IMU sensors to record acceleration, gyroscope, temper-
ature, magnetometer and barometer data. These boards are
placed on the lower back, legs, and feet. The recorded data
are used to categorize activities in eight different, basketball
related, classes. Jog (1), Walk (2), Jumpshot (3), Layupshot
(4), Pivot (5), Jumping (6), Running (7), Sprint (8).

In addition to IMU data, others are also using environ-
mental data like temperature or humidity and physiological
signals, like heart rate or blood pressure to recognize a va-
riety of sport activities. For instance [12] recognizes eight
different activities: cycling (1), training at the cross trainer
(2), rowing (3), running (4), squatting (5), stepping (6), walk-
ing (7) and weight lifting (8). Another related work is [11],
where sport, as well as daily activities are classified by using
an unsupervised machine learning algorithm and data from
smart-phone accelerometers.

In [16], a basketball game is divided into five key activities:
player movement (1), dribbling action (2), pass (3), screen (4),
and shot (5). For this the players wore a GPS-tracker and got
filmed while playing. Both GPS and video data were used,
which were then combined for a time-motion and video anal-
ysis. The results are visualized with an own approach. The
authors of [15] introduced a system for fine-grained activity
recognition in Baseball videos from YouTube that is capable
to analyze the video data and categorize the player move-
ments into eight different actions: Ball (1), Strike (2), Swing
(3), Hit (4), Foul (5), In Play (6), Bunt (7) and Hit by Pitch
(8). They compared four different aggregation methods for
video analysis and classified the resulting frame segments
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into one of the eight classes. [18] have evaluated hip ver-
sus wrist worn IMU sensors for seven activity classes, were
one of the recognized classes was playing Basketball. They
pointed out that wrist worn sensors are working slightly
better for recognizing Basketball with an overall accuracy
of 86% versus 81.9%. In [14], the authors have proposed a
trajectory-based approach for recognizing multiplayer be-
havior in basketball games by first segmenting the game data
into three phases: offense play, defense play and time-outs.
Afterwards, a detailed analyses is performed by using video
tracked, player-specific data. A Gaussian Mixture Model was
used to classify the data into three classes: starting formation
(1), move (2) and screen (3). With this data they are able to
evaluate the personal personal performance of each player.

3 SYSTEM DESIGN

The two system components used in our approach are (1)
a sensor system that is worn around the wrist, and (2) the
classification approach that estimates the basketball actions
from the streaming sensor data. Although such system could
consist of an off-the-shelf smartwatch, we developed our
system on a custom prototype to have full control of the
embedded sensing system and access to the raw IMU data.

Hardware

The bulk of the computing power, power management, and
wireless communication modules is provided by this off-the-
shelf board, which is produced by Intel Corporation. The
EDI2.SPON.AL.S version of the module, which we use for
the Platypus, is CE and FCC certified and specifically made
for wearable devices. The module’s main processor is a 22
nm Intel Atom "Tangier" (Z34XX) that includes two Atom
Silvermont cores running at 500 MHz and one Intel Quark
core at 100 MHz (for executing RTOS ViperOS). The system
has 1 GB RAM integrated on package. There is also 4 GB
eMMC flash storage on board, with Wi-Fi, Bluetooth 4 and
USB controllers. Its dimensions are 35.5 x 25 x 3.9 mm.

The Edison module runs an embedded version of the Linux
operating system, Yocto, which is an open source collabora-
tion project that provides templates, tools and methods to
help create custom Linux-based systems for embedded prod-
ucts, regardless of the specific hardware architecture. All sen-
sors are populated on an Edison-compatible printed circuit
board that contains several sensors that immediately inter-
face to the Edison’s microprocessors. Additionally, a battery
gauge and recharging circuit is added, as well as a miniature
display connector for a Sharp Memory LCD. This collection
of peripheral modules is directly interfaced to the Edison
board via its miniature 70-pin connector. The board has fur-
thermore been extended to contain optical pulse oximeters
or sensors for measuring skin conductivity, as separate mod-
ules attached to the custom sensor PCB. The prototype is
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Figure 2: The wrist-worn sensor prototype we use in our sys-
tem is specifically designed to capture, pre-process, and clas-
sify all data locally. It is equipped with an energy-efficient
display, a full IMU, 5 environmental sensors, a dual-core pro-
cessor at 500 mHz, and a microcontroller running at 100 Hz.
Its runs embedded Linux, and can be accessed via Bluetooth
4.0 and WiFi modules.

powered from an off-the-shelf 3.7V, 600 mAh Lithium-Ion
rechargeable battery of similar dimensions.

The display is a 1.28 inch (32.51mm) 128 x 128 pixel Mono-
chrome HR-TFT Transflective LCD Panel produced by Sharp,
which is especially energy-saving when infrequently up-
dated. It has a viewing area of 23.04mm x 23.04mm and a dot
pitch of 0.18mm x 0.18mm. The most important sensor for
this paper is the MPU-9250 (by Invensense), which includes
a 3D accelerometer, 3D gyroscope, and a 3D magnetometer,
in order to capture motion and orientation as accurately as
possible. Figure 2 shows the whole prototype, enclosed in
a custom-built case with a transparent top part, so that the
light sensors can still capture ambient light conditions and
the display remains visible, without requiring holes.

Classification Approach

This subsection investigates the nature of the recorded raw
data, the structures of the feature vectors and the methods
used in the field of machine learning.

A first visual inspection shows through example data
records for the data to be classified. As an example, typi-
cal patterns for low dribbling is the constant frequency of
particular peaks that occur at shorter intervals in time than
in the classes crossover and high dribbling, see Figure 3.
High dribbling, as depicted in Figure 4, can be character-
ized by a strongly increasing acceleration, which remains at
a high level for about half a second, rather than dropping
rapidly again. A crossover movement can be recognized by
the fact that there is a gap of about 2 - 3 seconds between
two dribblings, as seen in Figure 5. The reason for this is
that player carries the sensor at the dominant hand, but the
ball is dribbled with the other hand for a short time, thus the

high dribbling data example

Acceleration (mg)

Time (hh:mm:ss)
Figure 3: Typical time series for the high dribbling motion,
showing the acceleration in milli-g and gyroscope data in
rad/sec over time. Clear patterns can be seen in both accel-
eration and gyroscope data, but for further analysis we will
focus on accelerometer data.

low dribbling data example
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Figure 4: Typical time series for the low dribbling motion,
showing the acceleration in milli-g and gyroscope data in
rad/sec over time. Faster and more high-speed patterns can
be seen in both the acceleration and gyroscope data.

crossover data example
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Figure 5: Time series example for a crossover motion, show-
ing the acceleration in milli-g and gyroscope data in rad/sec
over time. .

acceleration on the dominant hand decreases sharply for a
short period of time. In Figure 6 one can see the recorded
data as recorded for a jump shot. Significant for this class
are consecutive peaks followed by a major drop of aprox.
10000 milli-g back to 0 milli-g in the acceleration. Due to the
dropping acceleration of the z-axis (blue line), the first peak
can be interpreted as dribbling followed by a jump shot.
Based on the data we used sliding windows with a win-
dow size of one second that got classified by our algorithm.
This window size has been chosen, because basketball is a
very fast sport with rapidly changing activities. Therefore
one activity mostly is in the range of milliseconds to one
second. Features has been calculated for every window. For
feature extraction only are the acceleration data used. At
the first step the, data from the gyroscope, magnetometer,
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jump shot data example
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Figure 6: Typical time series for a jump shot, showing the
acceleration in milli-g and gyroscsope data in rad/sec over
time. Clear patterns can be seen in both acceleration and gy-
roscope data. In the first version of our System gyroscope
data are not taken into account.

environmental sensors, or the battery status are not taken
into account by the algorithm. The used features are the
arithmetic mean and the standard deviation for every axis
of the acceleration data. This allows us to work with a 6-
dimensional feature vector.

In our first approach we used a supervised learning method
and focused on three different kinds of dribbling as well as
jump shots. In the experiment a small data set for training
that contains six seconds of data per class and per partici-
pant is used. To train the model, we used 150 data sets per
participant and per class, i.e. a total of 2225 data sets. The
sampling rate at which the data has been recorded is 25Hz.

To optimize the classification results and to improve com-
parability, classification has been done with a k-Nearest-
Neighbor as well as a Random Forest classifier. Both from
the scikit-learn package and implemented in Python. For
parameter optimization of the individual classifiers, we ran
the cross-validation experiments mentioned in the follow-
ing section for parameters over several ranges to obtain the
optimal choices as listed in Table 1.

Table 1: Best-performing parameters per classifier.
k-Nearest-Neighbor Random Forest
n_neighbors: 4
weights: distance

n_estimators: 10
max_features: auto
algorithm: kd_tree max_depth: None
leaf size: 10 min_sample_split: 2
p:1 min_sample_leaf: 1
metric: minkowski bootstrap: True

4 EVALUATION

In this section, the followed methodology is described in
more detail and a first evaluation of the results is presented.

Methodology

Three participants were recruited for a user study. The partic-
ipants are between 26 and 31 years old, none of them female,
and all of them experienced basketball players. Participants
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Table 2: The accuracy, precision, and recall perfor-
mance in percent for all classes: fast dribbling (fd),
crossover (co), high dribbling (hd), jump shot (js), and
background data (void).

k-Nearest-Neighbor

class Id co hd js void
accuyracy | 76.5 814 81.0 945 | 87.7
precision | 43.2 57.7 51.8 855 | 67.7
recall 56.0 27.0 584 87.6| 74.2
Random Forest
class Id co hd js void
accuracy | 83.5 83.0 824 96.6 | 91.9
precision | 62.4 563 555 89.6 | 82.0
recall 442 678 615 94.2| 76.0

wore the sensor, which was started approximately half an
hour before the practice, on their dominant hands and were
briefed on the purpose of the study before the recording.

From participant 1 30 minutes or about 45000 data points
were recorded, whereas from both other participants 2 and 3,
one hour or about 90000 data points were recorded, summing
up to an approximately 235000 data points in total. For later
annotation of the data, the participants were filmed during
the game. With the additional time-based information from
the video material, we are able to identify specific sequences
in the data and annotate them with the correct label. With
the labeled data we trained the model with a supervised
method in combination with leave-one-out cross-validation.
To avoid an imbalance of the model, we decided to limit
the number of training data per class to 450 examples. To
determine the accuracy, precision and recall for each class
and classifiers, their values were calculated for each iteration
step of the leave-one-user-out cross-validation and finally
the average across all folds was formed.

Results

The results, as depicted in the Figures 7 and 8, as well as the
determined accuracy, precision and recall in table 2 shows
that it is possible to achieve an average accuracy of 87.6%
even with few training data and simple features. The confu-
sion matrices 7 and 8 show that the classes low dribbling and
high dribbling are slightly better recognized than crossover.
Above-average recognizable are jump shots. The recognition
of this class is already possible with an accuracy of 96,6%.
Due to the good accuracy, but fluctuating precision, it can be
stated that the values of the features formed vary greatly, but
the classification is nevertheless largely correct. This sug-
gests that in the further course of research, the annotation
of the training data must be carefully examined again and,
if necessary, improved. Both classifiers vary in their results
in terms of precision and recall. This leads to the conclusion



Using Wrist-Worn Activity Recognition for Basketball Game Analysis iWOAR ’18, September 20-21, 2018, Berlin, Germany

that in future works more classifiers should be tested with
our data. An average accuracy of 87.5% is not yet optimal.
This still leaves room for improvement of the system. An
extension or refinement of the used features would result
in an improvement of the algorithm. The presented applica-
tion setup shows a novel combination that works well under
laboratory conditions and with hardware comparable to the
design and comfort of smartwatches.

Discussion

In this section the most related work of [13] is compared to
our proposed method. Furthermore the differences, as well as
the advantages and disadvantages between both approaches
will be discussed. The technical setup of [13] consists of
five self-developed boards with installed IMU sensors. The
hardware needs be placed on the players body. One needs
to be attached at the lower back, and each one on both legs
and feet. Those five devices are recording the data indepen-
dently from each other. The recorded data run through the
common known processes of a machine learning applica-
tion, i.e. preprocessing, segmentation, feature extraction and
classification. For recognizing a specific activity a decision
tree has been developed. Wherein the first step is to distin-
guish between a standing and moving activity. Only after
a moving activity has been recognized they decide which
movement particularly has been executed. Ten features are
utilized to calculate the correct class, for every segment of
data each accelerometer, in total four values, are obtained
and transformed into a feature-vector. The used features
are range, sum, mean, standard deviation, mean crossing rate,
skewness, kurtosis, frequency bands, energy and number of
peaks above a throshold. The sampling-frequency that is used
was first set at 200Hz, but was down-sampled to 40Hz for
the accelerometers due to redundant data.

In contrast to this, the approach presented comes with
a single IMU worn at the wrist, which is the most active
part of the body while playing basketball for the player who
currently owns the ball. As a result of this, the focus of our
system is set on the direct interaction with the ball. The used
features are limited to mean and standard deviation for every
axis of the accerelometer. Therefore the setup is held less
complex compared to [13]. Both approaches are evaluated
with the signals of three participants.

The lower complexity of the experiment is at the same
time its greatest advantage. The small number of devices in-
volved results in less redundant data. In addition, the system
offers less space for disturbing factors. Furthermore, with
only one device that the player has to wear at the body, the
system offers better wearing comfort and has less impact on
the players performance. As other works already depicted,
for example [3], it is also possible to detect walking or run-
ning activities by only wearing one wrist placed IMU sensor.

Confusion Matrix

low dribbling { Gty 20 111 9 59 350
300
crossover{ 179 120 98 12 41
s 250
2
5 107
T high dribbling 1 200
3
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jump shot 9
r 100
void - 35 50
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\0\‘x
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Figure 7: The confusion matrix for kNN shows particular
confusion among dribbling, and good results for jump shots.
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Figure 8: The confusion matrix for Random Forest shows a
slightly better per-class performance and equal confusion
among the different dribbling actions.

Due to these circumstances we would prefer a test-setup as
proposed by us and try to improve it further to be able to
classify more activities and improve the accuracy.

5 CONCLUSIONS AND FUTURE DIRECTIONS

We argue in this work that wristwatch-based motion sensors
are ideally placed to detect basketball-relevant actions and
gestures. The results of this first feasibility study suggest that
it is possible to classify different movements of a basketball
player using an inertial sensor that is worn on the wrist.
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Through this feasibility study, it is now possible to expand
the system and add more activity classes. By completing the
system and the resulting possibility to recognize all actions
of a basketball game only by means of acceleration data, it is
possible in the following to recognize the actions of players
in real time and without the help of video data annotation.
This enables a live analysis system that is able to visually
display the recorded games and, in a next step, develop the
system for live game analysis.

Furthermore, one could use the system for training pur-
poses and thus design, for example, a feedback system that
gives the training player feedback as to whether the action
he was currently performing was technically correct. This
would be especially useful for shooting training: The board
could be equipped with visual feedback reflecting the correct-
ness of the action performed, or offer more detailed action
analysis.
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