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ABSTRACT
Depth cameras have been known to be capable of picking up
the small changes in distance from users’ torsos, to estimate
respiration rate. Several studies have shown that under cer-
tain conditions, the respiration rate from a non-mobile user
facing the camera can be accurately estimated from parts of
the depth data. It is however to date not clear, what factors
might hinder the application of this technology in any set-
ting, what areas of the torso need to be observed, and how
readings are affected for persons at larger distances from
the RGB-D camera. In this paper, we present a benchmark
dataset that consists of the point cloud data from a depth
camera, which monitors 7 volunteers at variable distances,
for variable methods to pin-point the person’s torso, and at
variable breathing rates. Our findings show that the respira-
tion signal’s signal-to-noise ratio becomes debilitating as the
distance to the person approaches 4 metres, and that bigger
windows over the person’s chest work particularly well. The
sampling rate of the depth camera was also found to impact
the signal’s quality significantly.
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Figure 1: This paper systematically examines the impact of
themost prominent parameters to estimate a person’s respi-
ration rate from depth imaging: distance to the user, region
of interest, respiration rate, and sampling frequency.
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1 INTRODUCTION
Monitoring a person’s respiratory rate is important in many
settings, from medical applications to monitoring in sports,
meditation programs, or sleep monitoring. There exist many
solutions to estimate a person’s respiratory rate, including
the use of a respiration belt, a spirometer, PPG-sensors, or
body-worn inertial sensing methods. Most of these methods
have in common that they in some form require physical
contact to the user’s body, which may become either uncom-
fortable or restraining for the person to wear the respective
sensors over longer stretches of time. The focus of this pa-
per lies on contact-less respiratory rate detection utilizing a
depth camera in particular. This approach has been shown
to be feasible, and in contrast to the other methods does not
require the user to wear a sensor.
Although several depth sensing approaches have been

proposed to capture the respiration rate of a nearby user,
the impact of many parameters remains widely unknown.
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The assessment and a thorough evaluation of several key
parameters are therefore first discussed in the following.

2 RELATEDWORK
Non-contact respiration measurement is not limited to depth
cameras, but was also successfully carried out using standard
color or near-infrared cameras. These range from image
subtraction based methods such as the one presented in [22],
to optical flow based methods such as [15], [14], and [11],
which use Lucas-Kanade [12] or Horn-Schunck [9] methods.
In [5], the respiratory rate is measured with both, optical
flow computation with the combined local-global method [7]
and a depth sensor with surface registration using [4]. It was
shown in the latter that the respiration measurement based
on the optical flow is potentially better suited for respiratory
rate measurement than depth based measurements, which
is supported by [10], showing that human breathing mainly
occurs along the superior-inferior direction.
During respiration, the change of the volume of certain

body parts, namely the chest and abdomen, brings these
body parts closer to the depth sensor or moves them away.
These changes in distance are visible on the depth sensor
and typically are in the range of about 10 mm for normal
breathing. When holding still, they directly reflect inhala-
tion and exhalation of the observed subject. The approaches
in the literature on capturing the respiratory rate with the
help of depth images can roughly be split into two different
methods: Based on calculating the distance to, or based on
estimating the volume of the relevant parts of the body dur-
ing respiration. Both methods however are related to each
other, as calculating the volume relies on the distance of the
single surface points to the sensor. In most cases, a region of
interest (short: ROI), usually set to include data from the sub-
ject’s torso, is defined to focus only on the relevant portion
of the usually big amount of depth sensing data.
A simple proof of concept of measuring the respiratory

rate with a structured light depth sensor is given in [25].
Here, a solid plane is attached on the chest of the examined
body. This plane defines the ROI. Its surface points are cap-
tured with the Kinect v1 and are averaged for each received
depth frame. The resulting values reflect the average distance
of the plane to the Kinect sensor at the different time instants
given by the Kinect’s sampling rate. The motion caused by
respiration and thus the respiratory rate directly is visible on
this data. In [6], different parameters are evaluated, including
sampling rates of 5 Hz, 7 Hz, and 9 Hz, orientations of 0°or
25°, three light intensities, and different clothing (sweater,
jacket, and T-Shirt). Unfortunately the evaluation is special-
ized on their approach, contains unexpressive numbers, a
limited set of parameters, and hardly any information about
the evaluation setup. So their evaluation is of little help when

transferred to a different project. For respiration measure-
ment, the ROI is set to the chest. With help of the Kinect
SDK, it is possible to extract a skeletal model of any observed
human from the depth data. The respective shoulder and hip
joint positions of the skeleton are used as the corners of the
ROI. This skeleton and thus the ROI is updated for each sin-
gle frame. The depth values inside the ROI are averaged and
afterwards a weighted average of four successive such mean
values is computed to yield the respiration data over time. In
summary, this is the only paper where multiple parameters
are considered for evaluation, but it only is shown, that these
do not have any impact to their algorithm. In [18], along with
the respiratory rate, also the heart rate is measured using the
built-in RGB and infrared camera of the Kinect v2 and moni-
toring the slight color changes of the mouth area caused by
the blood pressure change in the vessels during a heart beat.
The respiratory rate is measured by caculating the mean of a
selected ROI at the torso. Both signals are bandpass filtered
with cut-off frequencies set that all frequency components
are rejected that are not part of breathing or the heart rate.
In [20] and [8], two papers from nearly the same group

and the same year, the respiratory rate is detected using
a Kinect v2 as depth sensor. With the frequency and the
regularity of the respiration as feature, the state of sleep
(wake, REM, NonREM) is classified. To achieve this, the ROI
is manually set to the subject’s chest and the depth values
within the ROI are averaged. In [20], it is mentioned that also
the average of the pixel-wise differences of two successive
depth images is calculated and used for respiration detection,
but this method is not further discussed. [8] describes how
to find the features for sleep classification in more detail. It
mentions linear interpolation between two successive depth
images to fix the Kinect’s varying sampling time to a certain
value and thewavelet transform as a tool for denoising. Many
details for the correct assessment of the respiratory rate are
missing or unclear, however, in particular the selection of
the ROI or the need to interpolate successive depth frames
which is not documented in other work and was not found
to have an impact in our experiments.
In [17] and [19], again two papers from nearly the same

group and the same year, a time of flight (ToF) camera is
used for respiratory rate measurement. They argue that a
ToF camera has many advantages to all other depth sensors,
like accuracy, no calibration required, real-time capabilities,
and so on. For respiration detection, a plane is fitted to the
ground surface the observed subject will be lying on. This is
the so-called table plane. Two other planes are then fitted to
the chest and the abdomen of the subject now lying on the
ground surface. Plane fitting according to [17] is achieved in
a least squares manner and according to [19] by clustering
and averaging the observed surface normals. The euclidean
distance between the table plane and the chest or abdomen
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plane reflect the subjects respiration. According to the au-
thors, this approach results in a signal with less noise and a
better stability than calculating the volume.
In [16] a 10 cm x 20 cm ROI on the center of the subjects

thorax is monitored. The mean orientation of the surface
plane is computed over 10 successive Kinect v1 frames and
then the motion component along the surface normal is
observed to extract the respiratory rate.

In [1], [3], and [2], the volume of a ROI in the torso region
is computed from the depth readings of the Kinect v1 or the
Kinect v2 in the case of [2]. The ROI is defined by the shoul-
der and hip joint positions of the skeleton that is extracted
from the respective Kinect SDK. The depth values inside the
ROI are converted to 3D coordinates using the depth sen-
sor’s intrinsics. From these points the volume is computed
using the Delaunay triangulation with linear interpolation.
According to the authors, this volume is proportional to the
air volume measured by a spirometer and is called quasi-
volume. The observed person is on a bicycle ergometer and
its pedaling motion is present in the obtained signal. This
motion successfully is filtered out by a FFT bandpass filter.
The distance- or volume-based methods described above

are sometimes supported by a respiration model that is com-
puted either previously or on the fly from the incoming data.
In most cases, the respiration model is obtained from prin-
cipal component analysis (PCA) of the respective region of
interest of a specified amount of successive depth images,
the so-called training set. [23] computes the PCA of the torso
and applies the orthomax rotation (more precisely its spe-
cial case, the varimax rotation) to the obtained PCA model.
According to the authors, with the varimax rotation, the
obtained model has more relevance to respiration than the
model from the standard PCA that exhibits meaningless vari-
ations. In contrast to that, as stated in the paper, the principal
axes obtained from the orthomax model feature local defor-
mations that are highly correlated to thoracic and abdominal
breathing, respectively. In [13] a zoom lens is attached to
the Kinect v1 IR projector to increase the size of the dots.
These dots then are tracked over 30 s and are stored in a
matrix containing the trajectory of each dot. A PCA is ap-
plied to this matrix and with the iterative EM algorithm the
16 strongest components are calculated. All bases that fail
the Durbin-Watson-test are thrown away. Then, applying
FFT on the remaining bases, all bases with less power in the
interest region of 0.02 Hz to 1 Hz are discarded. Using the
remaining bases, an average trajectory containing less noise
is computed. The approach is used for measuring the respira-
tory rate of sleeping subjects. A special ROI is not required,
but at the cost, that only one person can be within the field
of view of the Kinect. The approach was tested at different
distances and works best at 200 cm. [24] use white markers
to define a ROI covering the chest and abdomen. These white

markers are visible in the RGB data and thus precisely define
the ROI for the depth sensor. As a depth sensor, an Asus
Xtion PRO RGB-D camera is used. A PCA of the first 100
frames is computed to obtain a motion model. These frames
are preprocessed to reduce noise and to fill holes, as the PCA
is very susceptible to it. The first three principal components
then are used to reconstruct noise free data without the need
of preprocessing. The resulting depth values then are used
to generate a surface mesh and to compute its volume. The
calculated volume shows strong correlation to spirometer
data.

3 OVERVIEW
The depth data is captured from a Kinect v2, a time of flight
sensor, connected to a PC by using the Kinect SDK 2.0 built
with our custom software. The SDK allows to capture the
depth data and, when detected in the depth image, provides
skeletal information of up to eight humans, each having 25
joints. The way the Kinect SDK 2.0 detects a human and
maps a skeletal model is not reported, but (like in previous
versions) most probably is achieved similar to [21]. The depth
data, the pixel coordinates of all joints, and a pixel mask that
describes which depth pixels belong to which person, along
with the respective timestamp, continuously is transferred to
hard disk without further processing. Processing the data in
real-time was successfully carried out and is possible without
restrictions, but storing all data in the first place makes data
processing more flexible and repeatable. After recording, the
data goes through several processing states, beginning with
the preprocessing.

Preprocessing
Salt and pepper noise is a common source of errors when
dealing with depth images and usually is caused by a defect
pixel. It is characterized as being either totally white or black,
which means it either has the maximum possible value or
zero. Salt and pepper noise can effectively be eliminated by
a median filter. In our implementation it is applied to all
pixels showing that kind of noise, primarily to reduce the
impact of device specific parameters like pixel defects on our
evaluation and to ensure a robust measurement, especially
when looking only at few pixels. In depth data also other
types of noise are present like quantization noise and white
noise. Also surfaces with a steep angle towards the sensor
show more noise than surfaces with a flat angle as according
to Lambert’s cosine law much of the light energy is not
reflected back to the sensor. Asmentioned in the related work
section, there exist many ways of dealing with the different
types of noise, be it with band-pass filtering, PCA based
approaches, a simple moving average or similar techniques.
In our case, only the salt and pepper noise is removed from
the single depth images such that further processing is not
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affected too much by device specific parameters. All other
types of noise consequently remain a part of the signal. This
way, denoising will not distort our results and the impact
of different parameters on the overall noise level can be
investigated better.

Region of Interest
After preprocessing, the joint positions of the left and right
shoulders, the hip, and the mid spine are used to define three
rectangular regions of interest: the chest (1), the abdomen (2),
and the torso (3), as shown in Figure 2. Each ROI furthermore
gets divided into ten different sizes. The full size, that may
contain parts of the surroundings, step-wise is decreased by
subtracting 5% of the initial extent value from each side of
the rectangle at each step i . Starting from the initial width
w0 and height h0, the ith widthwi and height hi is computed
with (1). The smaller ROIs consequently still are centered on
their initial position and the smallest size will be 1% of its
initial size. The smallest possible ROI size is fixed to at least
contain 2x2 pixels to avoid empty or single pixel ROIs.

wi = w0 − (2 · 0.05 · i) ·w0

hi = h0 − (2 · 0.05 · i) · h0
0 ≤ i ≤ 9, i ∈ N

(1)

Figure 2: Definition of ROI position and size in our study.

Data Processing
Once the region of interest is defined, further data processing
has to concern itself with the extraction of the respiration
signal from the respective region. This can be reduced to
estimating the ROI’s volume or its distance to the sensor.
Due to slight movements of the observed person and moving
or unstable joint positions, the size and position of the ROI
varies over time. These variations can not be neglected and
directly will affect the computed volume of the respective
ROI. When not fixed to a certain size and position, the evo-
lution of the ROI’s volume over time will not represent the

respiratory rate, but will be dominated by the ROI’s varia-
tions. Estimating the volume consequently only makes sense
with our approach, when the ROI is fixed to for example
that computed in the first frame. This however is equal to
estimating the ROI’s distance to the sensor as two dimen-
sions are fixed to constant values by the definition of the
ROI and only the distance remains as parameter for volume
calculation. So, independent of how the single depth values
are processed for volume estimation, the resulting value will
also be a valid measure for the ROI’s distance. In contrast to
volume calculation, the computation of a distance measure
does not require any further processing like for example
multiplying it with the ROI dimensions.

Estimating the ROI’s distance with our approach therefore
is easier and, as the interesting body region gets tracked over
time, is more accurate and flexible. A valid distance measure
is to find the mean distance of the ROI to the sensor. For
this purpose all depth values within the respective ROI are
averaged. This average figuratively represents the distance
of an imaginary surface plane fitted to the tracked body part.
During breathing this surface plane moves towards or away
from the depth sensor. Its evolution over time is the sought
respiration signal. One drawback of this method is, that it
only is valid when the observed person does not move too
much and the ROI does not contain disturbing motions.

4 PARAMETERS
We distinguish several important parameters that may in-
fluence the quality of respiratory rate measurement. These
include the subject (size, gender,...), its respiration rate, the
distance of the subject to the sensor, and size and position
of the region of interest.

User
The user, namely the observed person, may play a crucial
role in respiratory rate measurement. The person’s size, BMI,
gender, personal respiration patterns such as thoracic or
abdominal breathing, clothing, or age, to name but a few
parameters, are likely to impact the respiration estimate. It
however is difficult to exactly pinpoint the influence of each
single parameter and their correlations to each other. As the
respiratory rate will not only be measured on a certain group
of people, these parameters are combined. Their combination
will be here referred to as the user.

Distance
The distance of the subject to the sensor is an important
factor of the overall accuracy of the measurement due to two
reasons. First, the number of sampling points seen by the sen-
sor is inversely proportional to the distance squared. Thus,
with increasing distance a reduced amount of data samples
that actually contribute to the measurement are present in
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Figure 3: Depth images of the experiments’ volunteers, as seen from a 2 meter distance, while sitting and facing the camera.
Note that the volunteers were told to avoid occluding their torso but were free to choose their sedentary posture.

the depth data. Secondly, the overall depth resolution of a
depth sensor gets worse with increasing distance. The im-
pact of the distance on the depth resolution depends on the
sensor. Structured light sensors for example are known to
be very susceptible to depth, whereas time of flight sensors
seem to be more robust here. Both sensor types however
are dependent from the light intensity reflected back from
the actively illuminated object which again is inversely pro-
portional to the distance squared. With increasing distance
therefore also an increasing noise level is expected.

Respiratory Rate
The respiratory rate primarily is the parameter to be mea-
sured. In order to get more variance in the data and to ensure
the measurement is valid on a wider range, the respiratory
rate is parameterized. This allows to investigate not only
different users, but also different respiratory rates per user,
as these may influence the measurement. One reason is that
people may breath differently on different respiratory rates.
For example, a different rate may cause deep or shallow
breathing or the user changes from thoracic to abdominal
breathing or vice versa. Furthermore it defines the lowest
possible sampling rate according to the Nyquist-Shannon
sampling theorem. Overall, its influence on the measurement
is worth being investigated.

Sampling Rate
The sampling rate is an important parameter when it comes
to power efficiency, computation time, or storage size. Usu-
ally a higher sampling frequency is preferred, but as the
depth stream contains a huge amount of data to be processed,
in many cases the processing time limits the sampling rate.
Also in case of a long time recording (for example over night)
without real-time processing, the data size may set a limit to
the sampling rate. In our case, without data compression, one

minute of depth data sampled at 30 Hz amounts to nearly one
gigabyte of data. Halving the sampling rate also means only
half the data. On the other hand, a lower sampling frequency,
at least at a certain point, affects the quality of the measured
signal. Thus it is important to know how different sampling
rates will impact the measurement of the respiratory rate.

Region of Interest
The respiration signal only is present in the depth image pix-
els that cover the relevant body parts for breathing, namely
the observed subject’s torso. As the whole depth image usu-
ally contains a substantial amount of data and as the relevant
image part in most cases is much smaller, the further pro-
cessing is focused on this area or even smaller parts of it.
The observed area is called the region of interest (ROI). The
ROI may be as big as the whole depth image or as small as
a single pixel, given the respiration signal is contained in it.
A smaller ROI is expected to be more susceptible to noise
while a bigger ROI requires more processing time and, if
chosen too big, will cover too much unnecessary details of
the surroundings that may influence the measurement. The
size consequently is one of two important ROI parameters to
observe. The other parameter is its position.When the region
of interest is chosen smaller than the relevant image part, its
position will influence the measurement quality, depending
on how well the respective body part is suited for measuring
the respiration. In the following, the ROI will also be called
window. Finding its optimal size and position is one of the
aims of this paper and is carried out in the evaluation.

5 EVALUATION
The aim of this section is to evaluate all meaningful or inter-
esting parameter combinations. Throughout the evaluation,
the signal-to-noise ratio (SNR) is used as a quality measure
of the obtained signal. It is calculated with (2). The higher
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the SNR, the higher the signal stands out from the noise and
the better it can be extracted from the data.

SNRdB = 10 · log10

(
PSiдnal

PNoise

)
(2)

Study Design
The studywas performedwith seven participants, six of them
male, with all wearing a T-shirt or sleeved shirt. Figure 3
shows the depth images from a distance of 2 meters for all
participants while sitting.
The experiment setup is as follows: Each participant has

to sit on a chair in front of a Kinect v2 sensor. The sensor
is adjusted on the height of 1.40 m and has an angle of 25°
towards the floor plane. The height of the chair is 0.5 m. In
the Kinect’s viewing direction in a regular interval of 1 m
four markers are placed on the floor. The first marker thus
has the distance of 1 m to the Kinect and the last marker is
4 m away from it. These markers help to define the exact
positions where the chair has to be centered on, such that the
different measurements all are taken from the same distance.
The participant is asked to face the Kinect and to place the
arms on the armrests of the chair such that its upper body is
fully visible to the depth sensor.
Each participant is asked to breath with a certain fre-

quency that is given via visual feedback from a custom pro-
gram. The experiment is started when the respective par-
ticipant has adapted his respiration to the given frequency.
During the experiment, they are asked to breath in a natural
and comfortable way. The experiment is repeated at each dis-
tance marker with two different frequencies each at 0.17 Hz
and 0.25 Hz. The duration of the experiment at the slower
frequency of 0.17 Hz is at least 2 min and varies depending
on the participant feeling comfortable. As the higher fre-
quency is exhausting to the participants and to ensure their
well-being, the duration for the faster frequency only is at
least 1 min and again varies depending on the participant.
Also to ensure well-being and good quality measurements, a
short break is done between two successive measurements.

Results
The results of our study are visualized with box plots. All
parameters that are not explicitly stated on the diagram are
mixed up and yield the variance of the drawn box plots
for the given parameter configuration. The only exceptions
to that are the ROI sizes and the sampling rate. When not
explicitly shown on the diagram, the sampling rate is fixed
to 30 Hz and only the largest ROI size is used to not omit
valuable data and to not confuse the data with smaller subsets
of itself. The ROI size in return is among the first parameters
to focus on. All findings only apply to our setup where the

Figure 4: Raw data and FFT data of user 4 at 10 cps, recorded
at the abdomen. These examples show that both distance
and ROI size matter significantly for the signal quality.

participants were sitting on a chair and not necessarily are
true for different setups like for example a standing position.
When looking at the signal (see Figure 4), it can be seen

that the respiratory rate measurement with higher distances
or with decreasing size of the ROI increasingly gets noisier.
Remarkably, in the frequency domain the signal still domi-
nates the upcoming noise even at the highest distance and
the smallest ROI size. The SNR at the different distances and
with different ROI configurations is pictured in Figure 5. The
SNR values indicate, that the signal quality is best at close
distances and big ROI sizes. The largest ROI size however
does not show the best signal quality. An explanation for this
is, that also parts of the surroundings are covered by the ROI.
The surroundings do not contribute to the respiration and
consequently everything that is captured from it is consid-
ered noise. The optimal ROI position is found to be the chest,
followed by the torso, and last but not least the abdomen.
This optimality order is independent from the distance and,
more importantly, it also is independent from the size of the
chosen ROI. A more fine grained hint of how to place the
region of interest can be taken from Figure 6. Here the dif-
ference of the minimum torso extent after exhaling and the
maximum torso extent after inhaling is shown with a heat
map. The brighter the area, the higher the distance between
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Figure 5: The signal-to-noise ratio (SNR) at different region of interest (ROI) configurations and distances shows that across
all data, the trends from Figure 4 hold: The respiration rate signal quality contains more noise when the person is at a larger
distance from the depth camera and as the region of interest becomes smaller.

5
Figure 6: A typical example of a heat map from a person’s
torso over a single respiration cycle, showing the maximum
difference in distance between inhalation and exhalation.

full exhalation and full inspiration. The heat map visually
demonstrates that during respiration the chest experiences a
greater expansion than the abdomen and thus yields a higher
SNR. The shown heat map however just is an example from
one single user and one single respiration cycle. It therefore

Figure 7: SNR for different users (1 to 7) at the three different
region of interest (ROI) positions: chest, abdomen, and torso.

can not be generalized, neither to different respiration cycles
of the same user nor to different users. Both cases are likely
to produce a different heat map due to a different respiration
pattern, for example abdominal breathing.



iWOAR ’18, September 20–21, 2018, Berlin, Germany Kempfle, V. Laerhoven

Figure 8: The signal-to-noise ratio (SNR) for different users
(1 to 7) at increasing distances (1 meter, top, to 4 meters, bot-
tom). A wide per-person variety can be seen, as well as a
more noisy signal for every user as the distance is increased.

Figure 9: An example of motion artifacts in the respiration
signal (Y axis: distance in millimeters, X axis: time in sec-
onds, for user 5) while repositioning at 18 seconds and oc-
cluding the torso at 38 seconds.

The single signal-to-noise ratios per user show strong vari-
ations across diferent persons, as depicted in Figures 7 and
8. This implies that the many parameters associated with a
user do influence the respiration measurement significantly.
Although just one female subject participated in the experi-
ments, the test results indicate that the user’s gender seems
to play a minor role in respiratory rate measurement. User
7 (female) has, independent from the ROI position or her

distance to the sensor, similar SNR values compared to the
male participants. Another factor that comes into play can
be seen when analyzing the poor performance of user 1 in
Figure 7: It is caused by the user’s body posture (skeleton
model) not being correctly recognized by the Kinect SDK at
a distance of 4 m. This in turn caused the ROI to flicker and
not being aligned correctly. Figure 8 demonstrates how the
distance impacts all users performances, especially that of
user 1. From a distance of about 4.5 m onwards, a skeleton
model no longer can be estimated by the Kinect SDK. Thus
it is expected that a unfavorably aligned ROI plays a certain
role in higher distances.

User 5 also shows a worse performance than the average,
mostly due to motion artifacts during recording. In user 5’s
data (see Figure 9) several jumps are present in the respi-
ratory signal that are caused by slight movements during
the measurement. The participants were asked to sit still
during the experiment because we did not want to single
out movement as parameter. At least for user 5 it seems that
slight movements can not be avoided on longer runs as they
are present in nearly each single recording, especially those
lasting longer than one minute. The ability to sit still is an
unexpected but influential user parameter in this case as due
to motion the overall SNR gets worse.
Decreasing the sampling rate yields less data and more

time for processing but also negatively influences the SNR.
In Figure 10 the impact of different sampling rates is plotted
against different respiratory rates and at different ROI posi-
tions. Figure 11 furthermore shows how the distance may
affect the performance at different sampling rates. The first to
observe is that independent of the ROI position, the respira-
tory rate, and the distance, the signal quality gets worse with
decreasing sampling rate. A smaller sampling rate therefore
is expected to increase the noise level and should only be
considered when due to the other parameter configurations
the increased noise level will not exceed a certain limit. An
explanation for the higher SNR is, that on higher sampling
rates the overall noise power gets distributed over a wider
frequency range, lowering the mean noise power level and
thus increasing the signal to noise ratio.
As suggested above, the user may switch from thoracic

to abdominal breathing when changing the respiratory rate.
The correlation of both the respiratory rate and the ROI po-
sition is depicted in Figure 10. For this, only the box plots at
the same sampling rates have to be compared: It is important
to note that the higher respiratory rate has a worse perfor-
mance than the lower one throughout all other parameter
configurations. Apart from this observation, the optimal ROI
position for both respiratory rates again is the chest area,
followed by the torso, and finally the abdomen. While sitting,
increasing the respiratory rate consequently does not change
the optimality order of the ROI position.
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Figure 10: SNR at different sampling rates, respiration rates, and ROI positions.

Figure 11: SNR at different sampling rates, distances, and ROI positions.

6 CONCLUSIONS
This paper presents a systematic parametric study for the
use of depth imaging to estimate respiration rate. For this
purpose, we have recorded the raw depth data from seven
study participants for variable breathing rates, and distances
between RGB-D camera and the persons. By also varying
the size and type of the observed region of the users’ torso
and the sampling rate, we obtained the following results:
User specific parameters have great influence on the signal
quality. Gender seems to play a minor role.
Distance proportionally increases the noise level and limits
the respiration signal quality. From a certain distance on, the
region of interest can no longer be detected reliably.

Respiratory Rate plays a role as well, as a higher frequency
tends to lower the signal quality.
Sampling Rate should be chosen as high as possible. Low-
ering it immediately decreases the signal-to-noise ratio inde-
pendently from other parameter settings.
Region of Interest denotes two sub parameters, namely the
ROI size and position that have to be treated independently.
A smaller size especially in combination with increasing dis-
tance has detrimental effects on the signal quality. The ROI’s
position ideally is placed on a body segment that reveals
large respiratory movements, in our case the chest.
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While some parameters were deliberately left out from the
experiments, the evaluation revealed that many parameters
still are hidden or neglected although they have a greater
effect on respiratory measurement than expected. One exam-
ple for this is considering the user as black-box in our case.
Apart from the obvious outliers, the variances across the
users cannot be explained satisfactorily as it is not known
what user-specific parameters may have caused these. The
user therefore needs a more sophisticated evaluation in the
future and we hope to single out the most influencing user
characteristics. Also, we like to expand our current research
to further parameters that were left out in this study, like
different clothing, different rotations to the sensor, different
user postures like standing or lying, deep and shallow breath-
ing, thoracic and abdominal breathing, partial occlusions,
setting the ROI larger than required, and different user move-
ments like for example walking, to name some parameters
of interest.
The dataset and python scripts supporting this paper’s

evaluations can be obtained by contacting the first paper
author or visiting http://ubicomp.eti.uni-siegen.de.
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