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Abstract  
The electrical grid is highly dependent on switchgear to maintain a safe and reliable power transmission. For this reason, 
the interest in on-site, non-invasive monitoring solutions including the detection of switch operations, their differentiation 
and ageing has significantly increased in the last years. Thereby, the research field of tracking acoustic emissions gener-
ated during the switching using low-cost micro-electro-mechanical system (MEMS) based sensors is emerging. This pa-
per presents a computationally efficient method for selecting process- and design-specific features on-site (on a sensor 
system or gateway) to eliminate the need of prior offline training. This ensures generalized usability for different switch 
types and sensor positions without high re-training effort. The selected features are further used for online multi-class 
classification of switching processes. The proposed self-learning method, as well as the use of the MEMS sensors (acous-
tic and vibration), are both evaluated for classification performance on switchgear measurements during twelve different 
processes, leading to a robust classification with an accuracy of over 95 % in average.  
 
1 Introduction 
Switchgear plays an indispensable role for the reliability 
and resilience of power systems by protecting and de-ener-
gizing critical electrical equipment in the event of a fault. 
As the demands on the power grid become more complex 
(e.g., higher safety and environmental standards, reduction 
of power outages and improved power quality [1]), more 
grid transparency is needed at all voltage levels. While con-
tinuous online monitoring of switching operations includ-
ing contact travel curve and timing, number of operations, 
electrical parameters as well as insulation condition is im-
plemented as a standard in the higher voltage levels of the 
electrical network [1], this is only the case in sporadic ex-
ceptions in the medium-voltage (MV) distribution grid. 
Economically, large-scale condition assessment using 
cost-intensive monitoring systems, such as the ones oper-
ating in the high-voltage level, is not justified as the cost of 
the monitoring system are of a similar order of magnitude 
as those of the equipment under investigation. Neverthe-
less, knowledge of the number and frequency of switching 
processes is of fundamental interest as it decisively deter-
mines wear and aging effects of the MV switches, which 
are the cause of 42.3 % of major failures [2]. For this rea-
son, cost-effective solutions with low installation effort 
and easy handling for the detection of switching operations 
are required. Great potential is promised by using low-cost 
micro-electro-mechanical system (MEMS) based acoustic 
and vibration sensors in combination with suitable intelli-
gent data evaluation.  
In this paper, we consider the MEMS-based monitoring of 
metal encapsulated MV switchgear units, which are manu-
factured according to a modular principle from individual 
cubicles. The cubicles consist of a variety of switches (e.g. 
load break switch, circuit breaker or earthing switch), fuses 
and auxiliary equipment (see Figure 1). While load break 
switches are used for (dis)connecting single assets or sta-
tions from the grid at rated current, earthing switches are 
used for grounding and can also be used in case of short-
circuits. All switches are equipped with spring-assisted 
mechanisms to allow safe operations independent of the 

operational speed. As one switchgear unit usually contains 
more than one switch to be monitored, the unambiguous 
assignment of detected switching operations to the corre-
sponding switch as well as the differentiation between 
switching processes (on and off) is important to be able to 
track the frequency and number of operations as well as 
aging effects of the individual breakers. Existing solutions 
rely on limit switches being triggered at the end of a 
switching operation or on the monitoring of electrical pa-
rameters to detect which circuit is opened or reconnected. 
As a retrofit solution, these approaches have the disad-
vantage of a high installation and wiring effort, since they 
need an installation inside the unit at each breaker. In con-
trast, our solution provides a way to detect the different 
switch operations non-invasively using only one MEMS-
based sensor system. This greatly simplifies the installation 
and promises to provide a suitable solution for network op-
erators as well as a widespread use.  
Multi-class classification must be carried out to assign the 
recorded signals to the correct switch. To train their mod-
els, standard methods collect training data to extract fea-
tures and select the application-specific ones that can sep-
arate classes in the feature space. After the offline training, 
the trained model is implemented for the use in the field 
e.g. on a gateway or a microcontroller. The repetitions of 
those offline learning cycles to learn design-specific fea-
tures for the high diversity of switchgear types and manu-
facturers existing in the field lead to a considerable effort. 
Furthermore, a change in the mechanics due to component 
exchange or aging also requires repeating the procedure 
again. Those methods are therefore less suitable for as-
sessing the condition of switchgear. For this reason, it is 
particularly important to use generalizable models for uni-
versal applicability. 
In prior work [3], we presented an online configuration 
concept for automatic differentiation between switching-
on and -off based on an adapted Silhouette Score. In this 
paper, we extend the approach to select relevant features to 
optimally distinguish between operations of all switches in 
a unit. Thereby, our approach allows training and appropri-
ate feature selection to be performed automatically without 



inference from the user, using only few labeled training 
data. The method is computationally efficient, so that the 
training can also be performed on-site (e.g., on a gateway 
or on the sensor system itself). Furthermore, the proposed 
method is not limited to switchgear classification but can 
be customized for other applications in the machine condi-
tion monitoring domain.  
In the following, an overview of existing switchgear mon-
itoring solutions is given before further introducing our 
proposed method for on-site multi-class classification. The 
approach is evaluated on switchgear measurements of one 
unit in a proof-of-concept study. 

2 Related Work 
The general trend from time-based to condition-based 
maintenance among grid operators leads to more and more 
attention being paid to the monitoring of switchgear. A 
comprehensive overview of condition assessment meth-
ods, their maturity and current research areas are given in 
[1, 4]. A promising mainstream research area is the vibra-
tion- and acoustic-based monitoring of switchgear, that has 
been studied since the 90s, mostly focusing on high-volt-
age circuit breakers [4]. Using acoustic signals generated 
during the switching processes promises to be a good solu-
tion for detecting mechanical failures, which are the origin 
of 52.6 % of major faults [2].  The key challenge for the 
algorithm development is the complexity of the acoustic 
signals, which results from very short switching durations 
with extremely wide energy bands in spectrum, strong non-
linearity and non-stationarity, corruption by noise, depend-
ency on the high variety of components and switching be-
ing only performed few times a year [4, 5, 6]. To distin-
guish between natural variations and (un)known fault con-
ditions, appropriate features and classifiers have to be 
found [4, 7]. Main feature extraction methods are, on the 
one hand, classical spectral analysis based on the Fourier 
transform [8] and, on the other hand, approaches that are 
more suitable for non-stationary signals and extract local 
information in the time-frequency domain [5, 9]. To get 
frequency components in a good resolution without mixing 

effects, adapted multi-scale decomposition methods like 
empirical mode/wavelet decomposition, wavelet packet 
transform or variational mode decomposition are used [4, 
5, 7]. Disadvantages of these solutions are, amongst others, 
the determination of the decomposition level, which might 
affect the analysis robustness and the considerable time to 
implement [7]. Furthermore, different classifiers to distin-
guish between normal and faulty equipment were reported 
in literature. An overview of methods with their (dis)ad-
vantages is given in [7, 9]. Thereby, these methods are 
mainly trained to detect certain mechanical failures (e.g., 
poor lubrication, spring fatigue or contact damage). How-
ever, they lack robustness, they highly depend on the train-
ing set as well as sensor position, and are limited in their 
generalizability given the diversity of switchgear types [4]. 
The high manual effort and expert knowledge to adapt 
these methods as well as the necessary precise sensors with 
high bandwidth are not justified at MV level, which is the 
reason why vibration monitoring and its usability for MV 
switchgear is still an open research topic [6]. A cost-effec-
tive, sensor-position-independent, and more generalizable 
method using self-learning algorithms and MEMS-systems 
is examined in the following. The method is primarily used 
to detect switch operations and assign them to the correct 
switch, though it can also be used to track trends in the ex-
tracted features due to ageing effects [3].  

3 Multi-Class Feature Selection 
In [3], we showed how ranked feature selection can be per-
formed based on the largest information gain in a one-di-
mensional feature space using an adapted Silhouette Score 
for learning a binary classifier. Preconditions for the online 
classification are the known number of classes and few 
training data, which are collected on-site. With the adapted 
Silhouette Score, a feature quality score (𝑓𝑓𝐶𝐶) can be calcu-
lated using the distance between features extracted from 
the training data and their own cluster center 𝑐𝑐𝑖𝑖  and the 
nearest cluster center 𝑐𝑐𝑘𝑘 as follows: 

𝑓𝑓𝑐𝑐 = 1
𝑁𝑁
∑ 𝑑𝑑𝑖𝑖𝑖𝑖−𝑑𝑑𝑖𝑖𝑖𝑖

max(𝑑𝑑𝑖𝑖𝑖𝑖,𝑑𝑑𝑖𝑖𝑖𝑖)
𝑁𝑁
𝑖𝑖=1 , 

whereby N is the number of classes, 𝑑𝑑𝑖𝑖𝑖𝑖  is the average dis-
tance of feature values of one cluster to their own cluster 
center 𝑐𝑐𝑖𝑖 and 𝑑𝑑𝑖𝑖𝑘𝑘 is the average distance of those features 
to the nearest cluster center 𝑐𝑐𝑘𝑘 (see Figure 2).  Feature 
scores of nearly one lead to a good classification and can 
be used for the inference phase, where the corresponding 

Figure 1  Part of a triple cubicle metal encapsulated 
SF6-gas-isolated MV switchgear unit from Driescher 
Wegberg with removed cable cubicle covers. 

Figure 2  Example of the Silhouette Score to select suita-
ble features as binary classifiers. 



feature is extracted and its distance to the centers (con-
verted into a class membership probability) is used as a 
classifier (see Figure 2). The extension of this method to 
multiple classes in the one-dimensional feature space can 
lead to strong overlapping clusters. To circumvent this, a 
multi-dimensional feature space is often created, which 
strongly distributes the features in space and thus leads to 
a better separability. However, with the increase of dimen-
sions, the number of needed training data also increases ex-
ponentially (curse of dimensionality). This is critical as 
only few labeled training data can be provided for practical 
reasons. For this reason and as lower dimensions also lead 
to an easier interpretability, lower computational costs, and 
an increased robustness against overfitting, a transfor-
mation of the multi-class problem to a binary one is carried 
out. To get binary classifiers, two popular methods exist – 
one vs. all (OVA) and one vs. one (OVO). For OVA, 
𝑚𝑚 classifiers for 𝑚𝑚 classes are learned, whereby each clas-
sifier distinguishes between the data of one class against all 
other 𝑚𝑚 − 1 classes. In contrast, OVO creates classifiers 
for all possible pairs of classes and therefore requires 
𝑚𝑚(𝑚𝑚 − 1)/2 classifiers, but yields better results [10]. For 
this reason, we propose a combination of the one vs. one 
classification with the adapted Silhouette Score. In our 
case, each operation (on/off) of a switch (earthing/load 
break switch) in the unit forms its own class. An example 
of each operation is shown in Figure 3, which illustrates 
that the characteristics of the signals differ depending on 
the cubicle, switch type and process. For the training, fea-
tures are extracted from the training data of all switch op-
erations. Features 𝑓𝑓𝑝𝑝 from one class 𝑝𝑝 are pairwise com-
pared with the features (𝑓𝑓𝑙𝑙 , 𝑓𝑓𝑚𝑚, 𝑓𝑓𝑛𝑛, … ) of the remaining clas-
ses 𝑙𝑙,𝑚𝑚,𝑛𝑛, … (one vs. one) by calculating the adapted Sil-
houette Score. The features that are best suited to separate 
these classes pairwise have a high Silhouette Score and are 
selected to serve as binary classifiers. In the inference 
phase, the selected features are calculated for every de-
tected switching actuation and a selection between two 
classes is made for each classifier (Figure 4). Thus, given 𝑗𝑗 
classes, a decision can be made for one class up to (𝑗𝑗 − 1) 
times. Thereafter, the class with the most votes is assigned 
to the operation.  

4 Proof-of-Concept Study 
In the following the benefits of our proposed method are 
evaluated on measurements of six switches gained on a 
MV switchgear unit in a proof-of-concept study.  

4.1 Data 
The data of this study were obtained at the MV switchgear 
unit shown in Figure 1 using one MEMS-based stereo mi-
crophone (MBSM) with a sampling frequency of 48 kHz 
and two MEMS vibration sensor systems (VSS). The VSS 
consists of a single-axis high-bandwidth accelerometer 
(A1) with a sampling rate of 62.5 kHz and a second three-
axis accelerometer (A2) with good resolution in low fre-
quencies with a sampling rate of 2 kHz. The sensor systems 
were installed at fixed positions to examine their capability 
to distinguish between all actions of one unit. VSS1 was 
screwed near the earthing switch drive in cable cubicle 1 
and VSS2 on top of the same cubicle. The MBSM was in-
stalled via a magnet approximately one meter behind the 
switchgear unit. Measurements of 200 complete on/off 
switching cycles were recorded at all six switches (load 
break switch and earthing switch in each cubicle).  

4.2 Feature Selection and Classification 
For the switch actuation detection and labeling of the train-
ing data, a threshold-based recognition is implemented as 
in [3], which leads to a detection accuracy of over 99 % and 
robustness against usual background noises (e.g., people 
speaking nearby). For the training phase, five recurrences 
of each process have been recorded and directly labeled 
with the process, the switch type, and the cubicle after sen-
sor installation. For each classifier, the corresponding sen-
sor signals are low pass filtered with different cut-off fre-
quencies, as the switch system is characterized by a damp-
ing system with oscillations mainly lying in the low-fre-
quency range. Afterwards, 21 different features (mean, var-
iance, kurtosis, power, flatness, root mean square, absolute 
mean, maximum, minimum, dynamic range, crest factor, 
spectral centroid, median and dominant frequency) from 
the time and frequency domains are extracted and normal-
ized. For each classifier, the best five features are selected 
with the adapted Silhouette Score to increase the robust-
ness as in [3]. In the inference phase, the probability for 
every selected feature is calculated depending on the dis-
tance of the feature to the corresponding cluster centers 
learned during training (Figure 2). An average probability 
is built from the five selected features for each classifier 
and the corresponding class with the highest probability is 
selected. Afterwards, the class that was chosen most often 
by the classifiers is finally selected (voting). As the 
switches in one cubicle are safeguarded against each other, 
each cubicle can only be in one of three states – both 
switches are off, earthing switch is on and load break 
switch is off or the other way around. This knowledge can 
be incorporated to check the assignment or to decide which 
class is more plausible, if more than one class wins the 
same number of votes.  

Figure 3 Combination of Silhouette Score and OVO for 
three classes and three features per classifier 

Figure 4 Example of switching processes for each switch  



4.3 Results and Discussion 
For the evaluation, five training measurements per switch 
and operation were randomly selected from all measured 
data and the classifiers are tested on the remaining 2340 
operations. This process was repeated 10 times and the av-
erage accuracy per sensor was calculated: 
 

Sensor VSS1 
A1 

VSS1 
A2 

VSS2 
A1 

VSS2 
A2 

MBSM 

Accuracy 96.2 % 93.5 % 91.8 % 95.5 % 97.5 % 
 
For the differentiation between all processes and switches, 
all sensors lead to an accuracy between 92 % and 98 % with 
a standard deviation between 0.9 % and 1.9 % for the dif-
ferent training repetitions. The axis-orientations of the sen-
sors play here a minor role. However, the sensor installed 
inside the first cable cubicle as well as the microphone tend 
to clip for measurements on the nearest switches, due to the 
large forces released when switching, thus exceeding the 
defined measurement range. For the microphone, a dis-
tance of at least 1-2 meters should be kept. Furthermore, 
both A1 sensors have the lowest SNR for the switching-off 
process of the earthing switches, which is better detectable 
for the accelerometers A2 with a greater resolution in the 
low frequency range. This is the case, as those switches do 
not release as much energy as the other switch processes. 
Furthermore, it should be taken into account that although 
the microphone can be used as a central sensor in the sta-
tion for other use cases, such as intrusion detection, it is 
also susceptible to background noise, which could influ-
ence the switching detection. For the classifiers, the most 
frequently selected features are the dominant occurring fre-
quency, mostly located below 1 kHz (supporting the ap-
proach of filtering the signal before feature extraction) and 
the absolute mean in the time and frequency domain, which 
is determined by the distance of the sensors to the individ-
ual switches. Furthermore, features learned for one sensor 
position cannot easily be transferred to another one, as the 
signal characteristics differ significantly. It is therefore im-
portant to be able to learn design-specific features locally, 
which supports our approach giving an opportunity for on-
site self-learning. 

4.4 Conclusions and further work 
In this paper, we present an approach for on-site feature 
selection using an adaption of the Silhouette Score, which 
prevents time-consuming and application-specific offline 
training. These features are used for learning binary classi-
fiers for an online one vs. one multi-class classification. 
We show that with this approach, twelve different switch-
gear actuations (that are automatically detected via a 
threshold) can be classified reliably. The suitability of two 
different MEMS-based sensor systems (acoustic and vibra-
tion) as well as two different installation positions are eval-
uated, and recommendations are provided. Further investi-
gations include long-term testing of the method, where 
changing properties of the switch spring mechanics may 
lead to changes in the data distribution that need to be 
tracked (as in [3]) to potentially allow for re-learning. Ad-
ditionally, the performance when the switches are not ac-
tuated for several weeks instead of several days as done 

here needs to be validated, and a state machine logic to fur-
ther improve the classification accuracy can be imple-
mented.  

5 Acknowledgement 
The project MAKSIM, on which this report is based, is 
funded by the Federal Ministry for Economic Affairs and 
Energy under the funding code 0350035B. The authors are 
responsible for the content of this publication. The authors 
would like to thank the Fritz Driescher KG for the cooper-
ation and for providing access to their switchgears. Thanks 
goes especially to Mr. Bernards, Mr. Goertz and Mr. 
Kohnen for their help and support in the study and tests.  

6 Literature 
 
[1]  N. Uzelac et al., "Non-intrusive methods for 

condition assessment of distribution and 
transmission switchgear," 2018. 

[2]  M. Runde et al., Final report of the 2004-2007 
international enquiry on reliability of high voltage 
equipment, Paris: CIGRE Technical Brochure 509, 
2012.  

[3]  C. Nicolaou, A. Mansour and K. Van Laerhoven, 
"On-site Online Feature Selection for Classification 
of Switchgear Actuations," - arXiv:2105.13639, 5 
2021.  

[4]  A. A. Razi-Kazemi and K. Niayesh, "Condition 
Monitoring of High Voltage Circuit Breakers: Past 
to Future," IEEE Transactions on Power Delivery, 
vol. 36, p. 740–750, 4 2021.  

[5]  Q. Yang et al., "A New Vibration Analysis 
Approach for Detecting Mechanical Anomalies on 
Power Circuit Breakers," IEEE Access, vol. 7, p. 
14070–14080, 2019.  

[6]  M.W. Hoffmann et al., "Integration of Novel 
Sensors and Machine Learning for Predictive 
Maintenance in Medium Voltage Switchgear to 
Enable the Energy and Mobility Revolutions," 
Sensors, vol. 20, p. 2099, 4 2020.  

[7]  S. Wan and L. Chen, "Fault Diagnosis of High-
Voltage Circuit Breakers Using Mechanism Action 
Time and Hybrid Classifier," IEEE Access, vol. 7, 
p. 85146–85157, 2019.  

[8]  W. Wang et al., "Online monitoring of high-voltage 
switchgear installation," The Journal of 
Engineering, vol. 2019, p. 1238–1240, 3 2019.  

[9]  S. Ma et al., "High-Voltage Circuit Breaker Fault 
Diagnosis Using a Hybrid Feature Transformation 
Approach Based on Random Forest and Stacked 
Autoencoder," IEEE Transactions on Industrial 
Electronics, vol. 66, p. 9777–9788, 12 2019.  

[10]  P. C. Chaitra and R. S. Kumar, "A review of multi-
class classification algorithms," Int. J. Pure Appl. 
Math, vol. 118, p. 17–26, 2018.  

 


	Abstract
	1 Introduction
	2 Related Work
	3 Multi-Class Feature Selection
	4 Proof-of-Concept Study
	4.1 Data
	4.2 Feature Selection and Classification
	4.3 Results and Discussion
	4.4 Conclusions and further work

	5 Acknowledgement
	6 Literature

