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Abstract—Deep learning methods have become an almost
default choice of machine learning approach for human activity
recognition (HAR) systems that operate on time series data,
such as those of wearable sensors. However, the implementations
of such methods suffer from complex package dependencies,
obsolescence, and subtleties in the implementation which are
sometimes not well documented. In order to accelerate research
and minimise any discrepancies between (re-)implementations,
we introduce a curated, open-source repository which (1) contains
complete data loading and preprocessing pipelines for 6 well-
established HAR datasets, (2) supports several popular HAR deep
learning architectures, and (3) provides necessary functionalities
to train and evaluate said models. We welcome contributions from
the fellow researcher to this repository, made available through:
https://github.com/STRCSussex-UbiCompSiegen/dl_har_public

Index Terms—human activity recognition, deep learning

I. INTRODUCTION

Deep Learning (DL) has established itself as a state-of-

the-art machine learning approach in HAR from wearable

and mobile sensors [1]–[3]. The wide variety of architectures,

however, combined with the fact that source code for these

approaches is often unreleased, poorly documented or not

maintained, has contributed to a problem of replicability in

this field. We argue that this impedes the analysis of novel

network architectures or approaches and transparent compar-

isons against existing models. Examples are mentioned in [4]

and [5], where authors were unable to reproduce the results

from [1] due to obsolete source code.

Another issue affecting replicability is a lack of an accepted

standard in the community for the preprocessing of public

datasets, leading to different results on the same dataset. This

tends to occur even where the model is re-implemented as

methodically as possible from published papers and hinders

exact replication of research outcomes.

We here propose to address these issues by creating and

maintaining a central public repository of DL models, dataset

loading and preprocessing pipelines, which can be used to

create replicable benchmark scores for novel and established

DL models. The aim is to use this as a single entry point into

the field of HAR and learning resources for all researchers.

The repository has been started from the outset to facilitate

This work received support from the EU H2020-ICT-2019-3 project "Hu-
manE AI Net" (project number 952026) and from the House of Young Talents
at the University of Siegen.

collaboration between different and distributed institutions on

future research projects, and we give an example of how this

is already happening in section III.

The repository contains complete data loading and prepro-

cessing pipelines for 6 popular datasets [6]–[11]. It further

includes two versions of the DL model DeepConvLSTM [1],

the original and a shallow version with only one LSTM

layer [4], as well as the state-of-the-art model Attend and

Discriminate [3], which uses novel techniques such as self-

and temporal attention. We also provide functions to train and

evaluate the models and encourage contributing models and

data loading / preprocessing configurations for other datasets,

to expand the coverage of the repository.

II. REPOSITORY STRUCTURE AND MODULES

The repository consists of a main script, containing a usage

example, and four GitHub submodules which serve different

purposes within the deep learning pipeline. Submodules allow

to manage and extend each part of the pipeline individually.

Within the repository, users also can find documentation

describing how to properly use the repository to perform

experiments. The following describes each submodule and its

functionalities.

A. Dataloader

The dataloader module is formatted as a python package,

and provides functions which help in loading raw data and

applying preprocessing techniques. This module can:

• Define parameters in YAML files, with presets for widely

used datasets, and a guide for adding new datasets.

• Download public HAR datasets.

• Extract raw data and organize resulting data by subject

or according to an arbitrary train/test/validation split.

• Apply preprocessing functions.

The dataloader module contains a class DatasetLoader

which stores the configuration options as attributes and imple-

ments several methods which enable the loading of data from

a compressed archive. A function load_preset is also defined,

which reads the configuration options in dictionary form from

the given YAML file. The preprocessing functions which are

currently implemented in the repository include:

• Select sensor channels and activity labels, as well as

mapping labels to integers for pytorch.
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config = load_preset(preset_name)
loader = DatasetLoader(data_dir, **config)
preprocess_dataset(loader, args)

Fig. 1. A minimal example illustrating downloading and preprocessing a
given dataset with the data module.

name: "nameofdataset"
data_files:

subject 1:
- "path/to/file"
- "path/to/file"

subject 2:
- "path/to/file"

sensor_columns: [0, 1, 2, 3, 4, 5, 6]

Fig. 2. Example of YAML configuration options.

• Replace missing data.

• Downsample the data by an integer factor after applying

a low-pass filter.

• Write processed data to disk using numpy.

These are all contained in a function preprocess_dataset. As

such, an instance of the DatasetLoader class can be initialized

with a preset or user-defined YAML config file and this can

be used to download and preprocess the given dataset using

the code shown in figure 1, where “preset_name" is the name

of the YAML file (without extension) and “data_dir" is the

directory where the raw dataset zip file can be found.

The dataloader module is fully configurable by means of

YAML formatted configuration files. YAML (YAML Ain’t

Markup Language) [12] is a data serialization language which

is both human and machine readable, and as such is often

used for configuration files. Configuration options for the

dataloader module are listed in the readme file in the git

repository, and include the URL from which the dataset

can be downloaded, the name of the archive, the columns

containing sensor data, activity labels, and user information,

among others.

Figure 2 shows an example YAML file. When read using

PyYAML, this will give a dictionary with keys “name",

“data_files", and “sensor_columns". The value of “name"

will be a string —“nameofdataset", and the value of “sen-

sor_columns" will be a list of integers. The value of

“data_files" will be a nested dictionary, with keys “subject

1" and “subject 2", where each value is a list of strings. These

three configuration options specify where the processed data

should be put (a folder called “nameofdataset"), what the files

containing processed data should be called (“subject 1" and

“subject 2") and which sensor columns should be used from

the raw data.

As of submitting this paper the dataloader module supports

6 popular HAR datasets, namely Heterogeneity Human Ac-

tivity Recognition (HHAR) [6], RealWorld HAR (RWHAR)

[7], Opportunity [8], Sussex-Huawei Locomotion (SHL) [9],

Skoda Mini Checkpoint (Skoda) [10], and Physical Activity

Monitoring (PAMAP2) [11]. As well as describing the file

structure of the data, the configuration files can also be used

to specify which preprocessing steps should be applied to the

raw data.

This system of using configuration files to specify data

loading and preprocessing steps is intended to enable authors

to share the exact setup of their experiments in such a way that

it can be easily reproduced, simply by sharing a configuration

file and specifying which version (or which commit) of the

data loading module was used. Currently, preset configuration

files are available for all 6 datasets. Where the datasets contain

data from multiple users, a Leave-One-Subject-Out (LOSO)

cross validation split is defined. In the case of the Skoda

dataset, data from only one user is present, so the data is split

into a training set containing 70% of the data, a validation

set containing 10% of the data, and a testing set containing

20% of the data. For the Opportunity dataset, we also provide a

preset file to mimic the train-valid-test split of the Opportunity

challenge [8].

B. Model

The model submodule contains implementations of popular

DL architectures used within the area of HAR, as well as

necessary functionalities for training and evaluation. The key

functionalities of this module are:

• Define model architectures used for training & prediction.

• Train defined models using processed datasets.

• Validate model performances using best-practice valida-

tion techniques within the area of HAR.

• Save prediction results as well as other relevant training

and validation metrics for further analysis.

The repository currently supports three DNN architectures:

DeepConvLSTM as proposed by Ordonez and Roggen [1], a

shallow version of DeepConvLSTM proposed by Bock et al.

[4] and the state of the art model Attend and Discriminate

proposed by Abedin et al. [3]. Each model is defined in a

separate python file within the folder models. In order to

ensure that each model added to the repository supports a

set of basic functionalities needed for logging and saving

checkpoints, each model inherits from a BaseModel class,

which itself inherits from the pytorch Module class. Adding

a new model to the repository is as easy as creating a

file model.py which contains your model, ensuring that it

subclasses BaseModel, and adding it to the models directory.

The module supports the most commonly used optimizers

and weight initialisation schemes, and provides additional

functionality at train time including data augmentation via

label smoothing [13] and mixup [14], and loss function

enhancement via sample weighting and consideration of the

center-loss function [15].

Trained models can be evaluated using fixed split or LOSO

cross-validation. A fixed split splits the dataset into train,

validation and test data. Splits can be defined via the YAML

files within the dataloading submodule (see section II-A).

During LOSO cross-validation s models are trained, where

s is the amount of subjects in the dataset, making each

subject the validation set exactly once. The final result is then

the averaged validation results across all models. We further
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provide functionality to have experiments run multiple times

using a set of user-defined random seeds.

To allow for further analysis (even at a later point in time),

users can decide whether calculated evaluation metrics (loss,

accuracy and F1-score (macro and weighted)), raw predictions,

console logs, and the best performing model should be saved

to disk. We further added support for logging results using

weights and biases (https://wandb.ai), a popular website for

tracking experiments.

C. Analysis

The purpose of this module is to analyse the performance

of a trained model in detail. Its main functionalities include:

• Output a concise evaluation report based on common

evaluation metrics like accuracy and F1-score.

• Rerun analysis on saved train and test results.

As of submitting this paper, the analysis submodule prints

out the average train (and test) results across runs. For the

LOSO cross-validation it additionally prints out subject-wise

results. We also allow users to run analysis of saved train and

test results retrospectively with the analysis.py script. Within

later iterations of this repository, we plan to extend the analysis

submodule to automatically create and save plots of average,

epoch-wise results.

III. WORK IN PROGRESS

In order to demonstrate the capabilities of the repository and

how it can be used for collaboration between organisations, we

show results of our experiments which tested the applicability

of grokking, which was introduced by Power et al. [16], to

HAR datasets. Grokking describes the phenomenon that a

neural network can be trained for long periods of time and

still learn patterns in the dataset at late stages of the training

process. Power et al. [16] show that though training loss

converged to 0 and validation loss started increasing again, a

second decrease in validation loss was witnessed during later

stages of the training.

Within the DL community there is a common belief that

perfect training results are a sure sign of overfitting. Eval-

uation metrics like the generalization gap suggest that the

performance difference between training and validation set

should be kept as small as possible, while heuristics like

early stopping suggest to stop the training process early once

a plateau is reached and validation performance stagnates/

decreases. Through the “Grokking" mechanism, Power et al.

suggest that though a network may seem to be overfitting as

evidenced by an increase in validation loss, it could still be

learning patterns in the data, leading to an improvement in the

validation metrics at later epochs.

To investigate whether grokking can be also exhibited within

HAR we trained the DeepConvLSTM model as proposed by

Ordonez and Roggen [1] for 300 epochs. We further tested

whether regularization techniques like a learning rate scheduler

(LRS) and a weighted cross entropy loss would lead to a better

(grokking) performance. As input data we used the Oppor-

tunity challenge dataset [8] with the split suggested by the

competition. We applied the same preprocessing techniques

as Ordonez and Roggen [1], and additionally normalised each

sensor-axis using z-scores. In total we tested four different

training settings using:

1) LRS and weighted loss. (LRS + weighted)

2) Only LRS. (LRS)

3) Only weighted loss. (weighted)

4) None. (none)

Within all settings we kept all other hyperparameters con-

sistent with those as reported by Ordonez and Roggen [1]. We

employed a LRS decay factor of 0.9 and a step size of 10.

Figure 3 shows the average training and validation results

obtained from all four settings across 5 runs using a set of 5

random seeds. On the one hand, one can see that the network

obtains (near) perfect training performance after around 50

epochs. On the other hand, within all settings, the valida-

tion loss only decreases for 5 epochs, before monotonically

increasing over time. Nevertheless, we are still exhibiting

an increase in validation metrics over time. Comparing the

different settings, one can see that setting 1, 3 and 4 perform

the most stable. Only setting 2 shows a slight decrease in

validation performance over time. It is also the only setting

which is not able to obtain perfect training results.

TABLE I
TEST F1-SCORE (MACRO) AFTER EVERY 50

th EPOCH.a

Setting

Epoch 1 2 3 4

50 53.63% 54.23% 52.05% 55.44%

100 56.58% 55.86% 53.31% 55.29%

150 58.13% 56.86% 54.21% 55.63%

200 57.66% 56.44% 52.37% 55.95%

250 58.62% 56.83% 51.70% 56.43%

300 58.49% 58.04% 52.64% 56.03%
aAveraged across 5 runs using set of 5 random seeds.

Table I holds the average test F1-score (macro) after every

25
th epoch. The table shows that both setting 1 and 2, which

employ a LRS, produce better testing results, suggesting that a

scheduled learning rate is necessary in order to produce more

generalised results. Our work so far suggests that some models

can benefit from longer training with a reduced learning rate

and higher weighting given to minority classes in the loss

function. We hypothesize that this improves the generalization

of the model by encouraging the parameters to settle into a

local minimum.

To conclude, our results question the applicability of a

generalization gap as well as early stopping for HAR. Though

we did not exhibit a second decrease in validation loss like

Power et al. [16], our results still show that long training times

do not necessarily hurt the generalization of trained models.

Our future research will include evaluating this approach on

a different dataset (e.g. RWHAR [7]), employing different

types of LRS and investigating whether this trend can also be

exhibited when employing LOSO cross-validation. Especially

the latter will show whether this form of “grokking" can still

be witnessed if the validation data attributes to a previously
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Fig. 3. Average train and validation results on the opportunity challenge dataset [8] using either a learning rate scheduler (LRS) and/ or weighted cross-entropy
loss (weighted) across 5 runs using a set of 5 random seeds. Though training performance reaches near perfection and validation loss increases, validation
metrics steadily increase across time. Using only a LRS has validation metrics slightly decrease at later stages of the training.

unseen subject, since the validation and test data of the

Opportunity challenge contain data of subjects which are also

part of the train dataset.

IV. FUTURE WORK

We would like to invite the members of the community

to join our effort and contribute to include more datasets,

models, preprocessing and analysis functions and data

augmentation techniques. As changing the model architecture

is just one way to obtain better results, we want to give

users the option to use their own custom loss functions,

learning rate schedules and optimizers, which in turn opens

up the opportunity to also evaluate semi- and unsupervised

learning problems. We further plan to add support for models

implemented in TensorFlow and package and index the code

for distribution on PyPI, so that it can be installed with a

package manager, once the basic set of features is complete.

The repository and source code for all experiments mentioned

within section III is publicly available via

https://github.com/STRCSussex-UbiCompSiegen/dl_har_

public.
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