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Abstract—We evaluate a contact-free method to observe the

breathing behavior of persons seated in front of a desktop

environment, with an RGB-D camera attached to the screen.

Our system monitors the breathing-induced movement of the

user’s chest, delivering a respiration curve from the camera

depth stream by mean- or median-based averaging of single-

distances to pixels in the target body region over time. The system

was evaluated in an experiment on 8 study participants. The

mean-based respiratory rate estimation presented fewer errors

and the system works best at close proximity. At 1m distance,

it presents a correlation to a respiration belt as ground truth

of 0.94 and an absolute error of 0.04bpm. From our data, no

influence on the performance of the system was found by gender

or different respiration rate. The final system does not require

extensive knowledge to set up and operate. The approach allows

users to monitor their breathing rate while working, opening up

new e-health application areas. They range from self-care and

healthcare to managing operators in safety-critical systems such

as control rooms, since the respiratory rate is closely linked to a

person’s state of attention.

Index Terms—non contact respiration monitoring, RGB-D

camera, respiratory rate, remote respiration measurement

I. INTRODUCTION

Although the human respiratory rate is an important vital
parameter when it comes to monitoring or diagnosing possible
physical illness [1], respiration is still under-measured [2],
[3]. Apart from clinical environments, the estimation of the
human respiratory rate has a wide range of applications, from
sports and fitness tracking to meditation, well-being and sleep
monitoring. It is closely linked to behavioural and affective
states [4] and can even be used as an indicator of wakefulness
or rather concentration, deploying the circumstance that the
respiratory rate decreases when drifting towards sleep [5].

In this work, we envision an easy to set-up respiration
monitoring system that delivers reliable data and can be op-
erated by non-professionals in an everyday environment with
the purpose to enable a whole range of e-health applications,
be it for sports, meditation, personal or professional health
monitoring, or beyond. Asthma patients, to name a concrete
example, could benefit from long-term observations of their
breathing made at home, without the need to go to a special
lab or their doctor’s office where only a limited amount of
time and space is available [6].

Fig. 1. Overview of our proposed system: An unobtrusive depth camera
observes the user’s chest to estimate and monitor this user’s breathing.

To detect the respiratory rate, a variety of sensors can be
used. The most accurate sensors include respiration belts,
spirometers, or nasal tubes. However, these contact-based
sensors are particularly obtrusive to wear and might hinder
people at their occupation or daily routines. Also, in most
cases they are not easy to set up or wear and typically require
specific equipment and an expert to conduct the measurements.
Smaller devices such as pulse oximeters operating on photo-
plethysmography measure heart rate or SpO2 reliably but lack
a reliable and instant respiratory rate estimation [7].

An alternative to such contact-based sensors are the so-
called remote respiration estimation methods that inter alia
utilize a depth camera to measure subtle chest and torso
movements during breathing cycles [8]. Such a system only
has little set-up requirements, just a depth camera, e.g. de-
ployed in many modern smartphones, and a user sitting or
standing in front of it. Recent respiration estimation methods
do not even need a clear line of sight to the user’s chest or
torso region and are robust to small occlusions and motion
artifacts [9]. Such a sensor that does not require extensive
arrangements, that delivers reliable data, and can be operated
by non-professionals would perfectly fit in the range of e-
health applications as discussed above.

This work aims to evaluate and assess the performance of a
depth camera employed as a respiration sensor in an everyday
environment outside clinics. In particular, it quantifies the
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precision of the estimation of the current respiratory rate in
the presence of possible distorting influences of user char-
acteristics, such as gender or individual clothing. We hereby
focus on office-like settings where a user sits in front of a
display and does some sort of breathing exercise or simply
is monitored by the system over a period of time. A depth
camera can be installed on the display like a small webcam
with a clear line of sight to the user’s upper torso as depicted
in Figure 1. We argue that this setup already resembles many,
if not most use cases such a respiration sensor would be used
in. It for instance allows for long-term respiration monitoring
during screen work or while watching TV, or can be used in a
more active context like practicing guided respiration exercises
in front of a display where the system provides some sort of
feedback to the user, the supervisor, or e.g. a doctor. In safety
critical functions, e.g. in control rooms or rescue coordination
centers, it can serve as a fatigue indicator, or it may be the basis
to recognize problematic respiratory events at an early stage,
for instance of asthma patients. In this way, it can function as
a safety device, recognizing the altered state of the user.

We present in this work a remote respiration estimation
system consisting of a small and affordable Intel RealSense
D435 depth camera attached to a standard consumer grade
PC like a webcam. The system is evaluated on a convenience
sample of 8 study participants under a range of varying
parameters. The contributions of this work and the developed
system are summarized as:

• A benchmark dataset containing force data from a res-
piration belt together with raw and processed depth data
from an Intel RealSense D435 RGB-D camera recorded
from the chest from 8 participants, 4 male and 4 female,
each recorded in six different settings: at 1m, 2m and
3m distance with a paced respiratory rate of 10bpm or
15bpm respectively.

• The source code for a remote breath monitoring system
to be used with an Intel RealSense D435 depth camera.
The small dimensions of the device and the possibility of
adjustments make it an attractive choice for a wide range
of individual work environments, most likely attaching
the RGB-D camera like a webcam to a screen.

• An evaluation of the system following the experimental
methodology of [10]. Our system to extract the respi-
ratory rate from depth data is compared to the ground
truth data from a respiration belt for various conditions,
as well as earlier systems with different depth imaging
hardware. The influence of participants’ gender, different
respiration rates and mean- or median-based algorithms
is investigated together with causes for possible differing
and the effect of individual clothing style.

Our experiment scripts are publicly available at
https://github.com/SierraBravo0705/rr-realsense for replication
and further experimentation. This paper will in the next
sections first position this work among related research,
before describing the design and study results. A discussion
of the results then leads to our main conclusions.

II. RELATED WORK

The approaches for continuously measuring the respiratory
rate can be divided into contact or non-contact systems. As
the first-named class is more likely to cause users distractions,
only the latter group comes into question.

Recently, much investigated strategies comprise of tradi-
tional RGB cameras, RGB-D cameras, thermal imaging, radar
and even Wi-Fi. All these contact-free techniques make use of
one of two general principles, according to [11].

1) Alteration of the air volume: In a breathing cycle,
the chest and abdomen expand during inhalation and
contract during exhalation. A displacement is induced
in the direction that the body parts are facing.

2) Change in air flow: It causes effects around the nose
such as periodic variations in temperature or humidity.

Radio science takes advantage of the Doppler effect. Ob-
jects in motion, such as the torso during breathing, cause a
Doppler frequency shift [12]. Besides Ultra-Wideband Radar
(UWB), Continuous Wave (CW), and Frequency-Modulated
Continous Wave (FMCW), even Wi-Fi devices are utilized.
Radar systems offer certain advantages. With electromagnetic
waves, the respiratory rate behind obstacles is detectable.
Sufficient lighting is not needed. Privacy concerns related to
image recording cannot arise. However, [12], [13] point out
yet unmet challenges: For instance, some of the pre-mentioned
techniques require high power. The ones which can operate
with less, i.e. Wi-Fi, generally have a lower sensitivity. In
general, high effort is needed to approach problems like the
multipath effect, motion artifacts corrupting the Doppler shift
by the chest, or interference with other medical equipment.
Thus, high-precise systems are very complex and costly.

Thermal imaging-based respiratory rate observation takes
advantage of changes in facial temperature induced by respi-
ration. The main disadvantages of systems as presented in [1],
[14] are the need to have the subject placed at a very close
distance of maximum 1m, to having a clear view of the face,
and to dealing with frequent movements of the head. Non-
depth based optical respiratory rate monitoring techniques with
RGB or near-infrared cameras range from image subtraction
as deployed in [15] to optical flow methods as in [16]. They
make use of the upward and downward movement of the
chest induced by respiration. Although the equipment itself
is comparably cheap, implementing these methods requires
complex algorithms and thus high computational time.

So far, RGB-D cameras have been used mainly in sleep
laboratories or to identify sleep apnea in lying patients, with
the camera alone [17], [18] or with the depth camera only
to track the position of the subject while radar detects the
respiratory rate [19]. For the purpose of monitoring apnea,
no high-precise recognition of respiratory rate was necessary.
However, high-performance approaches with an error up to
just 0.11bpm now exist [10], [20], [21]. All RGB-D methods
employ the principle (1), the alteration of the air volume in
organs. They can yet be subdivided into two groups: The
first group is based on the reconstruction of a quasi-volume
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Fig. 2. Left: Grey colour-coded example of a depth frame, as recorded by the D435 RealSense RGB-D camera. The red rectangle in the middle is the region
of interest (ROI) contining most depth pixels at the chest. This image was taken from participant 9, at 1m distance. The frame is cut around the participant,
focusing only on the participant’s upper body. The plot on the right shows exemplary the unfiltered and filtered depth curve as obtained from the depth camera
overlayed by data from respiration belt. This data is from participant 1, breathing at 10bpm, taken from 2m distance with the mean averaging mechanism.

of the deforming body part (1.1), while the second group
tracks the distance between observed area and camera directly
(1.2). Naturally, the latter method must by some means be
included in the first one, as the volume change is closely
related to the shift in the third dimension. [22] compared
volume- and distance-based approach. Their finding was that
the volume method is less precise as well as computationally
more elaborate, which is why we resorted to method (1.2) in
this work.

In [10] monitoring the displacement of the chest instead
of the abdomen or the entire torso as the region of interest
(ROI) showed in general better results. A ROI size as large
as possible was recommended excluding areas unaffected by
breathing. For a distance of up to 2m and sitting study
participants, the use of mean or median to average pixels
inside the ROI in contrast to more complex approaches like
remodeling the chest surface presented the best results. Mean
and median can handle occlusions only to a minimum, though.

In [10], [21], as well as in many other related works,
mostly the Kinect v2 RGB-D camera was used. However, as
claimed by the manufacturer [23] the Intel RealSense D435
outperforms it with higher resolution and frame rate. It is
smaller, which simplifies its installation, and the use of stereo
technique instead of Time of Flight permits mounting several
devices in the same room.

III. SYSTEM DESIGN AND STUDY SETUP

Our system is designed as an open-source repository1 to
facilitate replication by others. It includes a collection of
python modules to extract the respiration estimation signal
from depth frames. As illustrated in Figure 1 our system
consists of an Intel RealSense D435 depth camera connected
to a standard computer via USB 3.1. The system filters out
all necessary data from individual depth frames, as indicated
by the left image in Figure 2 and saves the timestamps and

1https://github.com/anonymized/anon-realsense

average distance to the chest, each for every single depth
frame, together in a CSV-file. The average distance hereby
is computed by either the mean or the median of single-depth
pixel values inside a predefined region-of-interest (ROI) of
the current depth frame. Different distances between person
and camera in the later experiment cause the same body
region to be described by less or more pixels. The ROI covers
only the chest, so its size must be adjusted according to
the distance. Both averaging methods, deploying the mean or
median, are used on the same data to permit comparison later
on. To address camera noise in the depth data, a temporal
median filter with a kernel size of 18 for mean averaged depth
data and 14 for median averaged depth data is implemented.
Furthermore, depth pixels with a depth value of 0m, i.e. no
depth value could be derived, are excluded from the averaging
mechanism.

For the evaluation of our system in the conducted ex-
periments, the setup is extended. While their breathing in-
duced chest motion was recorded by the depth camera, users
wore a respiration belt for ground truth measures, registering
expansion and contraction of the chest as a varying force
signal. From the force and depth data a respiration rate is
extracted, respectively. In the end, the quality of the camera
derived respiration rate is quantified by the Pearson Correlation
Coefficient (PCC) and error resulting from the comparison
to the exact respiration belt respiratory rate. The PCC is
computed on each whole sequence by Fisher’s z and with a
confidence interval of 99%.

The simultaneous beginning and end of the recordings
for both sensors could not be automatically determined or
accurately synchronized during the experiment. Therefore, an
alignment mechanism was added that relies on shifting the
shorter dataset for the maximum delay period step-wise over
the other one. The combination with the highest PCC between
the respiration belt and depth camera would be taken, and their
timescale correctly adjusted. The plot to the right in Figure 2 is
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an example of the aligned respiration curves from the camera
and respiration belt data. It also illustrates the noise reducing
effect of the median filter on the raw averaged depth data
inside the ROI (yellow curve and red curve).

To derive the respiratory rate inside a sliding window of
nearly 60 seconds, the upper peaks of the respective signal are
detected, and their timestamps are saved. Next, the mean time
intervals between the peaks is identified. This value equals
the periodic time and allows one to calculate the respiratory
rate via its reciprocal. The PCC for the considered camera and
respiration belt data is known from alignment. The Absolute
Error is defined by the difference between the camera-based
estimation of respiratory rate and the respiration belt’s respi-
ratory rate. The Relative Error is the quotient of the Absolute
Error divided by the respiration belt’s ground truth respiratory
rate. As will be seen in more detail, different respiration rates
were tested. The Relative Error was introduced as a parameter
that permits the comparison of deviations from different basis
values.

Eight people, aged 21 to 57 years (4 male, 4 female),
participated in this indoor experiment. Their study-relevant
personal information is summarized in Table I. They sat down
in an upright position on a chair of 0.5m standard height,
facing the RealSense D435 depth camera. The camera was
mounted on a tripod with a horizontal view on the complete
chest for all distances tested, 1m, 2m, and 3m. Below the
camera, a paced breathing visualization was shown which
participants were asked to follow to decrease user specific
breathing behaviors in this work. According to [24] the normal
respiratory rate of an adult lies between 12 bpm and 20 bpm.
The first paced respiratory rate was 15 bpm (0.17 Hz) while
the second respiratory rate simulated a more relaxed state with
10 bpm (0.25 Hz). In total, each participant was recorded in
six settings, on three distances with two respiratory rates each.

Participants wore a Vernier GoDirect respiration belt around
their chest and below their shirts or pullovers to provide
respiration ground truth. The sample rate of the respiration
belt and depth camera was set to their minimum of 10 Hz
and 15 Hz respectively to reduce the necessary memory and
processing time later. Still, with 10 Hz the modified Sample
Theorem fsample = 2.2 ⇤ fmax is generously met so that
Aliasing is avoided [25]. The ROI is set manually within the
RealSense SDK and can be extracted from the metadata of
the captured depth stream. Furthermore, the clothing of the
participants was noted to allow an assessment of the possible
influence of personal clothing style. Textiles were divided
into the two classes tight-fitting and loose-fitting. The latter
fabrics were believed to not reflect the characteristic chest
displacement during a breathing cycle due to the intermediate
space between the thorax and the textile.

IV. STUDY RESULTS

In Figures 3 and 4, the 48 data sets of the 8 participants
in their 6 settings are grouped according to four different
parameters: Gender, distance, respiratory rate, and the whole
compilation. Figure 3 hereby shows the mean-based averaging

TABLE I
GENDER, AGE, AND CLOTHING STYLE OF PARTICIPANTS. ”T” OR ”L”
REPRESENT ”TIGHT-FITTING” OR ”LOOSE-FITTING” RESPECTIVELY.

Participant 1 2 3 4 5 6 7 8
gender f f f m f m m m

Age 27 57 26 27 25 21 57 24
Clothing Style l l t t l t l l

method for depth pixels, and Fig. 4 shows the median-based
approach.

With a median PCC of 0.86, the mean averaging method
shows a high correlation. It decreases from 0.94 for 1m over
0.83 for 2m to 0.66 for 3m distance. With an overall Absolute
Error (Abs Err) of 0.11 bpm or 0.77% Relative Error (Rel
Err), the proposed system presents low errors. They develop
similarly to the PCC and increase at higher distances. The
Abs Err ranges from 0.04 bpm at 1m via 0.12 bpm at 2m to
0.28 bpm at 3m. It stands out positively that there are just
few data outliers. Taking into account PCC and both error
measures, the male and female groups, as well as 10 bpm and
15 bpm group perform similarly to their counterparts. This
behavior remains the same for the median-based calculation
method.

Although the PCC for the median-based approach remains
comparable for the 1m distance with 0.92, further distances are
clearly outperformed by the mean-based method. The median
PCC at 2m already is as low as 0.63 and decreases to 0.39 at
3m. Overall, the PCC for all groups is only 0.69. The error
displays the same behavior. From the 1m distance, its median
lies at 0.04 bpm and increases to 0.44 bpm at 3m. Again, for
the 1m distance resulted an Abs Err of 0.04 bpm or rather a
Rel Err of around 0.3% which is nearly the same as with the
prior method. The errors amplify to 0.21 bpm and 2.15% for
2m, and 0.44bpm and 3.25% for 3m. All in all, the median
approach can compete with the mean approach at the shortest
distance, but suffers more at higher distances.

For the evaluation of individual clothing style, the data
provided by the mean approach were considered. Comparing
the PCC and errors from those participants with loose-fitting
textiles to all participants, the values were hardly diverging,
even for the 3m distance.

V. DISCUSSION

The negative impact of elevated distances between the user
and the RGB-D camera on the estimation of the respiration
rate is not surprising, as previous work such as [10], [20],
[21] faced the same problem. It is mainly caused by the higher
noise level on higher distances. Also, the more distant the user
is, and thus the ROI is located, the smaller the ROI appears in a
frame if it is kept strictly covering the chest. Consequently, the
same anatomical area is less accurate because it is described
by fewer pixels. A Rel Err around 0.3% and a PCC of up to
0.94 makes the system applicable at close range with the mean
approach or with the median approach. The first one can deal
rather well with a further distance between person and sensor,
the median approach performs more poorly in these situations.
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Fig. 3. From top to bottom: Pearson Correlation Coefficient (PCC), Absolute
Error and Relative Error w.r.t. ground truth signal for the Mean method.
Boxplots show median (middle bar) with whiskers marking 1.5 IQR and with
outliers, grouped by (from left to right): Gender, Distance, Respiratory Rate,
and the overall performance with no split in the dataset.

Fig. 4. From top to bottom: Pearson Correlation Coefficient (PCC), Absolute
Error and Relative Error w.r.t. ground truth signal for the Median method.
Boxplots show median (middle bar) with whiskers marking 1.5 IQR and with
outliers, grouped by (from left to right): Gender, Distance, Respiratory Rate,
and the overall performance with no split in the dataset.

TABLE II
SELECTED MEDIAN VALUES DERIVED FROM THE RESULT PLOTS FOR THE

METHODS MEAN AND MEDIAN

Method
Parameter Group Mean Median
PCC [-] All 0.86 0.69

1m 0.94 0.92
2m 0.83 0.63
3m 0.66 0.39

Abs Err [bpm] All 0.11 0.16
1m 0.04 0.04
2m 0.12 0.21
3m 0.28 0.44

Rel Err [%] All 0.77 1.13
1m 0.33 0.27
2m 0.95 2.15
3m 2.77 3.25

From our exploratory survey on clothing style, for the
system in use, no work wear related specifications can be

derived. However, the distorting effect of a limited sample
must be taken into account. Furthermore, if the proposed
system is to be used in a clinical context, an experimental
comparison of the detectability of respiratory rates between
patients with and without respiratory issues is indispensable.

VI. CONCLUSIONS

This work evaluated the use of a small-scale depth camera
attached to the monitors of desk workers for the estimation
of respiratory rates. Our evaluation process followed the
methodology as described in [10] to allow comparison with
other depth camera studies. The results show that the mean
method works best at 1m distance between camera and user,
with errors of 0.33% or 0.04 bpm and a PCC of 0.94. It can
convincingly compete with comparative approaches using a
D435 or a Kinect v2 [10], [20], [21], given a sitting exper-
imental environment and focusing on close range. Enlarging
the distance from the camera to the user results in precision
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loss. We argue here however that it is not critical in our
scenario where we expect users to sit at a desk. This constraint
may even be beneficial to avoid recording of the respiratory
rate of bystanders or coworkers. Neither gender, nor different
frequencies of paced respiratory rate played a negative role in
the proposed system with the test group. The system worked
reliably without requiring participants to adjust their clothes.
The results show that such a system is indeed feasible and
allows for daily life respiration estimation in the context of
e-health.

A crucial step towards the deployability of the proposed
system in clinical environments would be the interface with
dedicated medical databases. The constant comparison of
significant artefacts from the live respiration signal to the
database could potentially allow for a preliminary diagnosis.

Affordability, small size, range of installation height, and
compatibility make the D435 ideal for many environments,
though its use is limited to a static scenario here where
persons are located close to the camera. A precondition for
the system to be used and deployed by inexperienced users
would be the addition of an interface, for instance through
a smartphone App. Further research could also aim at the
automatic placement of the ROI, a mechanism as proposed
in previous state-of-the-art work to similarly deal with self-
occlusions and enabling the system to track its user. Since
our proposed system is with the depth pixel averaging method
computationally effective, no time lags are expected during
the processing of depth frames.
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