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Abstract—Despite the simplicity of labels and extensive study
protocols provided during data collection, the majority of re-
searchers in sensor-based technologies tend to rely on annotations
provided by a combination of field experts and researchers them-
selves. This paper presents a comprehensive study on the quality
of annotations provided by expert versus novice annotators for
inertial-based activity benchmark datasets. We consider multiple
parameters such as the nature of the activities to be labeled,
and the annotation tool, to quantify the annotation quality and
time needed. 15 participants were tasked to annotate a total
of 40 minutes of data from two publicly available benchmark
datasets for inertial activity recognition, being simultaneously
displayed both video and accelerometer data during annotation.
We compare the resulting labels with the ground truth provided
by the original dataset authors. Our participants annotated the
data using two representative tools. Metrics like F1-Score and
Cohen’s Kappa showed experience did not ensure better labels.
While experts were more accurate on the complex Wetlab dataset
(51% vs 46%), Novices had 96% F1 on the simple WEAR dataset
versus 92% for experts. Comparable Kappa scores (0.96 and 0.94
for WEAR, 0.53 and 0.59 for Wetlab) indicated similar quality
for both groups, revealing differences in dataset complexity.
Furthermore, experts annotated faster regardless of the tool.
Given proven success across research, our findings suggest crowd-
sourcing wearable dataset annotation to non-experts warrants
exploration as a valuable yet underinvestigated approach, up to
a complexity level beyond which quality may suffer.

Index Terms—Inertial sensors, Activity recognition, Sensor
data annotation
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I. INTRODUCTION AND RELATED WORK

The automatic recognition of activities through wearable
inertial data has been identified as valuable information for
numerous research fields and applications (see e.g., [1], [2],
[3], [4]). The quality of benchmark datasets for such research
notoriously depends on the richness of recorded sensor data,
including the length of the recording, or the variety of par-
ticipants performing the activities. The annotation of the data
with activity class labels is often less prominent. While some
annotation scenarios such as medical data can be restricted to
field experts (e.g., medical staff), other application scenarios
such as the recognition of activities of daily living require
annotators to annotate a set of trivial labels (e.g., sitting,
standing, etc.). Despite the simplicity of labels and extensive
study protocols along with detailed activity descriptions, the

majority of researchers in sensor-based technologies tend to
rely on annotations provided by a combination of field experts
and researchers themselves [5]. Along with most publicly
available benchmark datasets failing to provide details on their
annotation process, wearable-based data annotation remains to
date a tedious, time-consuming task and requires researchers
to dedicate a substantial time to it during data collection
(up to 14 to 20 times longer than the actual recorded data,
as for instance mentioned in [6]). Ultimately, the lack of
documentation and absence of a common protocol for sensor-
based data annotation has resulted in many published datasets
following one’s own individual and self-defined data anno-
tation protocols. However, as evident from recent workshops
dedicated to the annotation of datasets1, and tutorials 2, there
is scientific interest of the community in evaluating the impact,
importance and applicability of annotation techniques, tools,
and methods.

In other machine learning-related research areas such as
Computer Vision [7], [8], [9], [10], a proven method for
obtaining a substantial amount of annotations is the use of
crowd-sourced annotation services such as Amazon Mechan-
ical Turk [11], which are yet to be explored in the wearable-
based community. Publicly available benchmark datasets that
provide both image- and inertial-based sensor data remain
scarce (see Table 1 in [12] for a curated list), yet authors
of a majority of currently publicly-available datasets reported
to rely primarily on video recordings to allow for an accurate
offline labeling process [13], [12], [6], [14]. We present here
a study that involves 10 novice and 5 expert annotators who
labeled two, 20-minute data segments taken from two public
inertial-based datasets used for activity recognition [12], [15]
using two frequently used open-source visualization tools [16],
[17]. The primary objective of this publication is to address
the following set of research questions:

1) To what extent are novices - annotators with limited
expertise on inertial sensor data - capable of annotating
such activity data using presently available open-source
software?

1https://text2hbm.org/arduous/
2https://www.ubicomp.org/ubicomp-iswc-2023/program/tutorials/



2) Does the prior acquaintance of annotators with sensor-
based data significantly influence resulting annotations?

3) What are the obstacles that must be overcome and
what limitations exist in commonly employed tools and
procedures?

A. Data Annotation Challenges
With dedicated calls for datasets at conferences or journals,

such as NeurIPS3 or IMWUT4 the scientific community ac-
knowledges the need to have a broad spectrum of benchmark
datasets. However, with the rising interest in publishing new
datasets, we face complex challenges regarding the label-
ing process itself. According to Yordanova [18], researchers
working on wearable, sensor-based datasets face 4 challenges
while annotating data. These challenges are: (1) The gap of
knowledge between system designers and knowledge experts,
(2) the process of label engineering, (3) defining the meaning
of a label, and (4) annotating big data.

(1) The gap of knowledge between system designers and
knowledge experts describes the problem that in many scien-
tific projects the people who design the classifying algorithm
and the people who label the recorded dataset are not the same.
This problem can lead to a missing common language between
both groups and finally to a bias in the dataset caused by
simplified or even naive ground truth or the missing ability of
the domain expert to define a formal definition for a complex
activity. Moreover, data work is often carried out by annotators
who are not co-located in the same geography or culture as
the ML practitioners which can serve to further distance data
labor from its outputs [19].

(2) The process of label engineering refers to the fact
that many commonly used datasets for sensor-based human
activity recognition, such as those summarized in Table 1
(Hoelzemann et al. [13]), lack transparency regarding how
they were collected, reviewed, and labeled. This makes it
difficult to thoroughly evaluate the accuracy and correctness
of the labeling. Omitting this information obscures potential
flaws or biases that may exist in the datasets. For instance,
research publications presenting new datasets often do not
provide enough details about the decisions undertaken during
data collection, curation, and annotation [20], [21], [22].

(3) Defining the meaning of a label can be a challenging
task for a researcher, depending on the complexity of the
activity classes of a dataset. Atomic labels, such as sit,
stand, walk, etc. are unambiguous, however more complex
labels like sit to stand, walk to run, doing laundry, clean-
ing dishes, etc. can be ambiguous for both, the annotator, as
well as the learning algorithm. Since scientists are looking
for more complex classes and more challenging datasets, this
problem needs to be taken into account by researchers through
developing tools that can help with defining such structured
and complex labels.

(4) Annotating big data or datasets, outlines the need for
annotation tools that can help with the annotation of data in

3https://neurips.cc/Conferences/2023/CallForDatasetsBenchmarks
4https://dl.acm.org/journal/imwut/dataset-papers-guidelines

large quantities by multiple people. Whenever datasets are
recorded, especially in-the-wild, researchers tend to employ
self-annotation and/or in-situ annotation methods [5]. These
methods have the advantage that the workload for an an-
notator is moved to the participant itself, however, they are
susceptible to producing an incomplete ground truth [18],
[23]. Participants tend to forget to annotate their data or
use synonyms for the same activity class [18]. Employing
deep learning methodologies like transfer learning and active
learning can partially address the labeling bottleneck, but
human verification is still required to check and correct the
automatically generated labels.

B. Activity Recognition Annotation Challenges

In theory, the video frames and IMU sensor samples cap-
tured between two key synchronization points should be prop-
erly aligned timewise. However, in practice, synchronizing
the video and IMU streams precisely can pose difficulties.
Challenges arise from clock drift between the camera and
IMU devices, as well as different sampling rates for video
frames versus IMU data samples [12]. Even with initial
synchronization (e.g. via synchronization jumps), these issues
can cause the alignment between video frames and IMU
samples to drift over time, which makes it challenging to
guarantee that every individual video frame and corresponding
IMU data sample remain correctly synchronized throughout
the captured data sequences between key synchronization
points. Moreover, as Bulling et al. [24] note, multiple sensors
may be subject to sensor drift. That is, the sampling rate of
various sensors in a system may deviate from their original
calibration over time, resulting in inconsistent measurements
across sensors. Careful engineering and calibration of the data
capture setup is required to minimize time drift and maintain
tight synchronization between the video and IMU modalities
as well as multiple sensors.

To address the challenges of synchronizing and annotating
multimodal activity data, researchers have developed several
specialized tools, for instance, the MaD-GUI [17], ELAN-
Player [16], the Wearable Development Kit (WDK) [25], and
Signaligner [26]. We decided to include MaD-GUI due to its
accessibility as a Python package and its easy adaptability, as
well as ELAN-Player due to its prevalent use as an annotation
tool within our research community.

II. STUDY DESIGN

Our study utilized a convenience sample of 15 volunteers.
5 participants with experience in activity recognition were
classified as experts, while 10 participants without prior expe-
rience in activity recognition nor inertial dataset labeling were
deemed novices, representative of crowd-sourced annotation
services. The WEAR [12] dataset contains fitness activities
recorded during untrimmed outdoor workout sessions. Video
footage was recorded using a head-worn camera capturing the
egocentric view of each participant. In contrast, the Wetlab
[15] dataset had participants perform lab experiments being



recorded from a top-down, stationary perspective. Compar-
ing the two datasets, labeled activities in WEAR are more
sequential and block-wise, whereas activities contained in the
Wetlab dataset, given its specific use case, are more ambiguous
to third-party observers. Additionally, Wetlab exhibits less
intense acceleration, posing challenges in identifying actions.
Each participant annotated 20 minutes of data from the WEAR
dataset and 20 minutes from the Wetlab dataset. Regardless of
the used annotation tool (ELAN or MaD-GUI), each partici-
pant was simultaneously displayed both the video stream along
with accelerometer data captured at the right-wrist. To ensure
the quality and consistency of annotations, we restricted the
study to a one-hour duration. This decision was influenced by
previous research showing prolonged annotation tasks can lead
to fatigue [27] and boredom [28], reducing quality. Moreover,
the complexity of sensor datasets can make it hard to maintain
focus during extended sessions [29]. By dividing annotation
into shorter sessions, annotators can take breaks and recharge,
potentially improving quality.

Randomization. We divided both datasets into two 10-
minute segments and randomly assigned either the MaD-GUI
or ELAN-Player first to each participant. The study procedure
(Figure 1) then involved a briefing to introduce the tool’s func-
tions and activity classes in the subset. Participants annotated

Fig. 1. The study protocol consists of four main components: (1) Briefing,
(2) (Tool) Warm-Up, (3) Experiment WEAR, and (4) Experiment Wetlab.
Randomization, indicated by the dice, was used to determine the participant’s
initial tool to avoid learning effects.

the WEAR dataset first, followed by the Wetlab dataset. This
order was chosen because of the comparatively lower mental
demand of the WEAR dataset, comprised primarily of long
activity blocks. In total, each participant annotated 40 minutes
of data by completing the procedure with both tools.

Briefing and Warmup. When first introduced to the ELAN-
Player or MaD-GUI, participants took part in a briefing on
the tools and labeling classes. During the briefing phase, the
supervising researcher explained the annotation procedure,
which differs for each tool, including how to add, delete,
or modify annotations. Furthermore, each activity class was
explained in detail along with a short demonstration. The
briefing was followed by a 5-minute warm-up session. During
this warm-up, participants became familiar with the tool and
dataset classes while watching a short segment from a different
dataset participant.

Class Description. The first 20 minutes of data were used
from the third WEAR subject and the second Wetlab subject.

Neither subject was shown during the warm-up. The WEAR
subset consisted of six, and the Wetlab subset of seven classes:

1) WEAR: running (sidesteps), bench-dips, stretching
(shoulders), jogging (butt-kicks), burpees, and lunges.

2) Wetlab: pouring, pipetting, transfer, stirring, cutting,
pestling, and mixing.

For the Wetlab dataset, an additional mixing class was
included in the label options, though not part of the original
label set. This complex, multi-step activity (”mix into 200ml
beaker, add 1ml detergent, and stir” [15]) was deliberately
added to challenge participants and introduce ambiguity in
identifying and labeling activities. During the study, partici-
pants were left alone in a room without time constraints. After
annotating 10 minutes of data from both datasets, participants
were requested to complete a questionnaire. The questionnaire
included the NASA Task Load Index (NASA-TLX) assessment
[30], [31], which aims to evaluate the perceived workload
during the annotation task. Furthermore, participants were
provided with two open text fields to express their positive
and negative experiences, as well as their opinions about the
tool. The test distinguishes 6 different evaluation categories
(Mental, Physical and Temporal Demand, Performance, Effort
and Frustration). Each category is rated between 0 and 100
with a 5-point step size.

Evaluation Metrics. Each participant’s annotation session
was assessed using four metrics. First, we measured the time to
annotate each 10-minute segment. Second, we calculated the
Cohen’s Kappa Score [32] between annotations and ground
truth to measure inter-annotator agreement. The Cohen’s
Kappa Score or Cohen-κ is calculated as κ = (p0 − pe)/(1−
pe) with p0 being the relative observed agreement between the
annotator and the ground truth, and pe being the hypothetical
probability of chance agreement. Third, we computed the F1-
score [33] which is the harmonic mean between the precision
and recall score of a participant’s annotations compared with
the ground truth labels. Finally, in order to assess the overall
ability of an annotator to spot action segments within the data
stream, we calculate the NULL-class accuracy score.

III. RESULTS

Figure 2 provides a color-coded illustration of provided
annotations of each participant split across each data segment
and involved dataset. Table I depicts times measured by the
study supervisor that each participant needed to finish each
subset-specific annotation task, as well as the corresponding
F1-score, Cohen-κ value, and NULL-accuracy calculated on
the annotated data. One can see that the accuracy and con-
sistency of provided annotations varied heavily depending on
which dataset was to be annotated by participants. Comparing
these calculated evaluation metrics, it is evident that the
WEAR dataset is, due to its more structured sequences in
activities, less challenging for any annotator. The high overall
F1-score of 95.03% and an average Cohen-κ of 0.96 indicates
that almost every participant was capable of annotating the
data consistent to the ground truth annotated by the original
authors. Note that confusion amongst labels (see subject 2 in
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Fig. 2. Figure 2 shows color-coded annotations from all participants, categorized by expertise (expert or novice), dataset (WEAR or Wetlab), and 10-minute
data segment (S1 or S2). The top row displays the original authors’ ground truth annotations for each segment. The right column indicates the annotation
tool used for specific segments, assigned randomly as depicted in Figure 1. The color legend below the annotations denotes the label classes occurring in the
datasets. In summary, this figure provides a visual overview of the collected annotations across expertise levels, datasets, segments, and tools. The color-coding
allows comparison to the ground truth and highlights labeling patterns.

TABLE I
SUMMARY OF F1-SCORES, COHEN-κ VALUES, NULL-ACCURACIES, AND INDIVIDUAL TIMES NEEDED TO ANNOTATE THE SUBSETS OF THE WEAR AND

WETLAB DATASET USING EITHER THE MAD-GUI OR ELAN-PLAYER. COLORS INDICATE NOVICES, NOVICES AVERAGE AND STANDARD

DEVIATION, EXPERTS, EXPERTS AVERAGE AND STANDARD DEVIATION, OVERALL AVERAGE AND STANDARD DEVIATION.

WEAR Wetlab
Annotation Time Annotation Time

Subject F1-score Cohens-κ NULL-accuracy MaD ELAN F1-score Cohens-κ NULL-accuracy MaD ELAN
sbj 0 98.96% 0.9837 99.00% 15:45 8:32 37.62% 0.5323 84.33% 29:42 16:25
sbj 1 97.31% 0.9666 99.81% 18:08 20:30 39.92% 0.5397 83.11% 22:56 20:34
sbj 2 80.73% 0.8375 96.81% 23:10 17:12 43.49% 0.5385 69.82% 22:20 32:43
sbj 3 96.95% 0.9549 95.45% 12:13 8:47 60.53% 0.5560 77.39% 15:46 18:34
sbj 4 97.31% 0.9637 98.23% 31:30 21:15 35.56% 0.3419 60.78% 47:30 71:00
sbj 5 98.82% 0.9829 99.42% 19:46 12:42 60.57% 0.6386 79.23% 22:34 15:51
sbj 6 97.64% 0.9639 98.13% 29:43 16:35 29.93% 0.4512 79.55% 31:30 18:04
sbj 7 98.99% 0.9845 99.64% 25:41 17:18 62.20% 0.5827 71.24% 35:40 28:49
sbj 8 98.99% 0.9854 99.52% 17:02 29:26 44.85% 0.4944 78.60% 24:45 53:19
sbj 9 97.43% 0.9640 97.98% 16:35 17:54 48.38% 0.5912 80.12% 21:34 19:58
Avg. 96.31± 5.54% 0.9587± 0.044 98.40± 1.40% 20:57 ±6:21 17:01 ±6:11 46.31± 11.42% 0.5267± 0.0829 76.42± 7.14% 27:26 ±9:04 29:32±18:30
sbj 10 84.82% 0.8879 98.90% 6:59 11:30 47.71% 0.5844 77.99% 11:45 16:50
sbj 11 97.71% 0.9654 98.07% 13:45 5:12 58.48% 0.5806 78.44% 16:17 7:57
sbj 12 96.96% 0.9627 99.72% 12:53 10:17 43.82% 0.5087 83.74% 12:50 16:08
sbj 13 98.53% 0.9811 99.42% 10:00 10:17 50.77% 0.6319 80.63% 20:19 16:08
sbj 14 84.29% 0.8863 99.67% 9:24 8:57 54.53% 0.6381 84.38% 14:32 19:30
Avg. 92.46%± 7.24 0.9367± 0.0458 99.16%± 0.69 10:36 ±2:44 9:15 ±2:26 51.06%± 5.72 0.5888± 0.0519 81.04%± 2.95 15:09 ±3:22 15:19±4:21
Avg. 95.03%± 6.18 0.9514± 0.0443 98.65%± 1.24 17:30 ±7:19 14:26 ±6:22 47.89%± 9.92 0.5474± 0.0782 77.96%± 6.35 23:20 ±9:36 24:47± 16:32

Figure 2) is probably to be classified as inadvertent mistakes,
for instance by selecting the wrong label within a selection
window.

The NULL-accuracy of 98.65% further suggests that every
participant distinguished successfully relevant action segments
in the data with only two subjects 10 and 14 being the
exception, which were not able to detect and label the activity

stretching (shoulders) within the first ten minutes of data.
As both annotators were classified as experts, the missed an-
notations not being characterized by peaks in the acceleration

datastream and the annotation taking place at the very end of
the dataset segment, failing to annotate said activity might be
caused by said experts relying too much on their own expertise
in recognizing action segments in the inertial data without
feeling the need to cross-check them with the corresponding
video stream. Contrarily, the evaluation metrics obtained on
the Wetlab dataset make it evident that experts are on average
able to score a higher F1-score, Cohen-κ, and NULL-accuracy
compared to novices, with respective average improvements
being around 4.75%, 0.0621, and 4.62%. Figure 2 further



reveals that for the Wetlab dataset the activities pouring,
transfer, stirring and mixing were frequently confused

with each other by both experts and novices. While the
WEAR dataset has been homogeneously annotated by (almost)
every participant, the Wetlab dataset covers a lesser-known
application scenario of activities in a DNA-extraction experi-
ment, causing participants to lack a deeper understanding of
the involved labels and their semantics, regardless of their
experience level in annotating inertial-based data. In summary,
it is noticeable that experts are about twice as fast as novices
while achieving high F1-scores, Cohen-κ values, and NULL-
accuracies, regardless of the tool or dataset they were tasked
to use. As mentioned earlier, the Wetlab dataset comprises
of short, complex, and interconnected activities, making it
challenging for annotators that lack expert domain knowledge
to differentiate between them. Annotating these subsets proved
to be more demanding for especially novice participants,
particularly due to the introduction of the intricate task of
”mixing”. Interestingly, though annotation quality varied to
a larger degree amongst novice annotators, it is noteworthy
that novice subjects 3, 5, and 7 achieved the highest overall
annotation performance on the Wetlab dataset.
Cognitive Workload: Comparing results obtained from the
NASA-TLX assessments, one can see large deviations amongst
participants (see Figure 3). In general, the results of both
expertise groups indicate that the cognitive workload and
temporal demand were perceived to be low to mediocre
for both tools. Further, frustration was higher with expert
annotators while physical demand was perceived higher with
novice annotators.

Mental
Demand

Physical
Demand

Temporal
Demand

Performance Effort Frustration

Experts (MAD) 46% 8% 34% 28% 47% 51%
Experts (ELAN) 43% 10% 22% 46% 28% 46%
Novices (MaD) 32% 16% 29% 38% 36% 27%
Novices (ELAN) 36% 19% 36% 36% 54% 28%
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Fig. 3. The results of the NASA-TLX [30] assessment indicate that the
perceived cognitive workload remains consistent regardless of the tool used.
However, participants reported slightly higher levels of Mental Demand, Phys-
ical Demand, Performance, and Effort when using the ELAN-Player, while
perceiving lower levels of Frustration. Temporal Demand was considered as
equal for both tools.

Overall, the ELAN-Player was regarded as the slightly more
suitable tool: Both groups felt more confident in annotating
samples correctly using the ELAN-Player and were less frus-
trated by its user interface. In general, participants who started

with the ELAN-Player often expected more functionality with
regards to the control options of the MaD-GUI video player,
since the ELAN-Player (first released in 2006) is a well-
established tool that offers additional video controls, such as
fast forward/ slow motion or forwarding/ reversing the video
in fine-granular steps. A full list of comments about the tools
is included in this paper’s supporting material document.

IV. CONCLUSIONS

This paper presented a quantitative assessment of the dif-
ference in the quality of annotations provided by expert and
novice annotators in the context of labeling wearable inertial
data. The study involved participants annotating 40 minutes of
data: two 10-minute segments originating from two publicly
available inertial datasets used for wearable activity recogni-
tion [15], [12]. Participants used two well-known and open-
source visualization tools [16], [17] which are capable of dis-
playing both inertial and video data of the respective datasets
simultaneously. Evaluation metrics, i.e. F1-score, Cohen-κ,
and NULL-accuracy showed that participants classified as
experts, who have experience in annotating inertial data and
can benefit from prior experience with inertial sensors, were
able to annotate the data segments quicker and overall more
consistent in quality. Further, depending on which dataset was
to be labeled, annotations varied significantly in quality. While
the WEAR dataset, which contains mostly easy-to-understand
fitness exercise labels, was labeled almost completely in line
with the ground truth, the Wetlab dataset, which consists of
a more complex application scenario and consists of labels
with higher ambiguity, showed higher confusion amongst all
annotators. Although confusion among novice annotators was
higher, a significant amount of novices were able to provide
annotations of the same quality as compared to experts, with
some even outperforming experts by a significant margin
(approx. 2-4% F1-Score).

We identify four key takeaways of our study:

1) Both experts and novices encountered similar issues.
We thus believe that annotation of wearable activity
recognition data should not to be considered exclusive
to individuals experienced with wearable technologies.

2) High NULL-accuracies along with a low F1-scores of
activity classes, suggest that correctly conveying se-
mantics and overall understanding of the segments to
be labeled remains the main hurdle to maximize the
likelihood of consistency amongst annotators.

3) Agreeing results for Cohen’s Kappa indicate that vari-
ations in dataset characteristics, such as data and class
complexity, could be the determining factors in identi-
fying datasets that are more suitable to be annotated by
novices than others.

4) Given that recording plans for inertial benchmark
datasets often contain detailed explanations of performed
activities, we argue many publicly available datasets
could be crowdsourced for annotation purposes with
proper measures in place.



What remains to be investigated is which measures, such as
sample video clips of action segments, prove to be most effec-
tive in conveying the semantics of activities to these novice
annotators. Considering its proven success across numerous
research domains, our findings imply that crowdsourcing wear-
able dataset annotation to non-expert annotators merits further
exploration as a valuable yet under-investigated approach, up
to a given level of data complexity beyond which the label
quality may suffer.
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and J. d. R. Millàn, “Collecting Complex Activity Datasets in Highly
Rich Networked Sensor Environments,” in IEEE Seventh International
Conference on Networked Sensing Systems, 2010.

[7] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-
Tuset, S. Kamali, S. Popov, M. Malloci, A. Kolesnikov, T. Duerig, and
V. Ferrari, “The Open Images Dataset V4,” International Journal of
Computer Vision, vol. 128, no. 7, 2020.

[8] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common Objects
in Context,” in European Conference on Computer Vision (D. Fleet,
T. Pajdla, B. Schiele, and T. Tuytelaars, eds.), 2014.

[9] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A Large-scale Hierarchical Image Database,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2009.

[10] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benen-
son, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for
semantic urban scene understanding,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2016.

[11] A. Sorokin and D. Forsyth, “Utility Data Annotation With Amazon
Mechanical Turk,” in IEEE Computer Society Conference on Computer
Vision and Pattern Recognition Workshops, 2008.

[12] M. Bock, H. Kuehne, K. Van Laerhoven, and M. Moeller, “WEAR: An
Outdoor Sports Dataset for Wearable and Egocentric Activity Recogni-
tion,” CoRR, vol. abs/2304.05088, 2023.

[13] A. Hoelzemann, J. L. Romero, M. Bock, K. Van Laerhoven, and
Q. Lv, “Hang-Time HAR: A Benchmark Dataset for Basketball Activity
Recognition Using Wrist-Worn Inertial Sensors,” MDPI Sensors, vol. 23,
no. 13, 2023.

[14] P. Zappi, C. Lombriser, T. Stiefmeier, E. Farella, D. Roggen,
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