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Abstract—Most off-the-shelf wearable devices do not provide
reliable synchronization interfaces, causing multi-device sensing
and machine learning approaches, e.g. for activity recognition,
still to suffer from inaccurate clock sources and unmatched time.
Instead of using active online synchronization techniques, such as
those based on bidirectional wireless communication, we propose
in this work to use the human heartbeat as a reference signal
that is continuously and ubiquitously available throughout the
entire body surface. We introduce PulSync, a novel approach
that enables the alignment of sensor data across multiple devices
utilizing the unique fingerprint-like character of the heart rate
variability interval function. In an evaluation on a dataset from
25 subjects, we demonstrate the reliable alignment of independent
ECG recordings with a mean accuracy of −0.71±3.44 samples,
respectively −2.86±11.43ms at 250Hz sampling rate.

Index Terms—wearable, synchronization, heart rate variability

I. INTRODUCTION

The proper alignment of independent time bases across
multiple wearable devices, attached to various body locations,
is a major challenge for a range of today’s sensing tasks. Most
off-the-shelf devices do not support hardware synchronization
as it is complex and tends to exceed their small energy
budget. For this reason, available research datasets contain
often manually, and thus often inaccurately, matched sensor
channels. Especially applications that apply advanced machine
learning techniques on multi-modal sensor signals, such as
activity recognition from wearable devices, are suffering from
a poor alignment of coincident events as these inaccuracies
inevitably result in a poor classification [1], [2].

Several approaches are aiming at the synchronization of
nodes in wireless sensor networks (WSN) such as body-worn
sensing systems. They can be divided into two fundamental
categories. The first one, aiming for online synchronization, is
usually network-based and relies on wireless technology such
as Bluetooth [3]–[5]. The required protocols, however, result
in an overhead in the already energy-intensive radio commu-
nication. The second one, aiming for offline synchronization,
exploits spontaneous and sporadic events to align the recorded
time series subsequently [2], [6]–[10]. Typical examples use
external events such as motion patterns, to observe and identify
simultaneously occurring events in the sensors’ measurements
to match the time bases. As these sensors are attached to the

body, however, such a synchronization can suffer from soft
tissue deformation and delays due to motion sequences and
inertia of the body parts. Patterns in accelerometers’ signals
can therefore exhibit significant shifts: for a standing jump for
instance, the arms’ sensors produce a pattern first, followed
by a delayed pattern in the sensors at the torso. In contrast
to the above approaches, we propose to synchronise with the
human heartbeat, a signal that is continuously and ubiquitously
available throughout the entire body surface.

Different measurement principles enable the detection of
the heartbeat, either by capturing the pulse wave that travels
through the blood vessels, or by detecting the electric field,
originated in the cardiac muscle, at the skin surface. For
decades, electrocardiography (ECG) was exclusively present
in clinical environments. In recent years, however, the progress
in miniaturization and signal processing has enabled more con-
venient wearable devices to detect the tiny, pulsatile electric
field changes at the body surface. It is predicted that most
common wearables will soon have access to the vital sign
through an on-board heart rate sensor [11], [12]. Inter-beat
intervals for heart rate variability (HRV) analysis are com-
monly calculated from such signals, with the HRV interval
function [13] being a unique, fingerprint-like signal exhibiting
identical patterns at all body locations. ECG signals also
have a high propagation velocity [14], so that the pulsatile
signals show up nearly simultaneously throughout a person’s
body surface. ECG is thus an attractive reference for aligning
time series across wearables, either as independent and offline
recordings, or online and solely data-driven, based on the com-
pressed information of the detected heartbeats’ timestamps.

In this paper, we make the following contributions:
• We present PulSync, a novel approach for the data-driven

alignment of sensors solely based on the human heartbeat.
• We propose to utilize the ubiquitously, continuously avail-

able vital sign and the derived location-independent, unique,
and fingerprint-like heart rate variability (HRV) interval
function to match the local times across multiple devices.

• Our evaluation demonstrates the method’s general feasibility
and an achieved alignment accuracy in the order of few ms
for a publicly available dataset from 25 subjects [15].
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II. THEORETICAL BACKGROUND

The following section first gives an overview of relevant
online and offline synchronization methods for body-worn
sensing systems. Subsequently, the origin of the heartbeat
and its detection are described exemplary for ECG-related
techniques. Finally, the heart rate variability and its unique,
fingerprint-like characteristics are explained, which eventually
enable the data-driven alignment of the signals.

A. Present Synchronization Methods

A large variety of methods and research approaches aims at
the time synchronization in diverse applications with entirely
different requirements on accuracy and precision as well as
limits in costs and complexity. The established network time
protocol (NTP) and the precision time protocol (PTP) are
widely used in wired networks such as the Internet. Also
the popular global positioning system (GPS) provides precise
time information. In wireless sensor networks (WSN) and
particularly in body area networks (BAN), with multiple body-
worn nodes, energy efficiency, and respectively the resulting
battery life, is a critical parameter [11]. The surveys [16] and
[17] provide a brief overview of common online synchroniza-
tion techniques for WSN. Based on the short-range wireless
standard Bluetooth, approaches for synchronized measure-
ments in body sensor networks (BSN) achieved accuracies
ranging from 3.5 ms [3] over 100 µs using the sniff mode [4]
to even 17.4 µs utilizing the spark state mechanism which,
however, is not supported by all devices [5].

The method of Bannach et al. [6] is not intended to compete
with network-based online approaches. It rather aims at on-
body applications of stand-alone devices without the capability
of synchronization via wireless communication as it would
exceed their energy budget. Instead, synchronization actions of
the wearer, such as clapping, shaking, or jumping, are used as
characteristic signatures to automatically align signal segments
from different sensors. This content-based synchronization
enables to reduce communication to a unidirectional channel
or even an offline alignment of the recorded data. The quality
of event spotting is essential for the accuracy of alignment, and
for different sensing modalities specific spotting algorithms are
required. However, the required synchronization performance
largely depends on the target applications. According to the
authors, an accuracy below 1 s is sufficient for the recognition
of motion-related activities in daily life while a performance
better than 0.1 s is considered as not required.

Bennett et al. [7], [8] present a data-driven offline synchro-
nization technique that detects physical and cyber couplings
between the interacting signals of multiple wearable sensors.
Couplings are events that happen to the sensors at the same
global time, irrespective of their local timestamps. A shortest
path algorithm is then applied to determine those signal
couplings that minimize the overall clock drift in the system.

Likewise, Wang et al. [2] present an advanced method that
combines the single-time use of the energy-demanding NTP
with the continuous identification and alignment of context
markers. Similar to the previous signal couplings, these are

physical actions that are known to have been detected simulta-
neously by multiple sensors. In contrast to predefined synchro-
nization actions, context markers are incidentally performed
throughout the entire recording and do not interrupt the ex-
periment. The presented method reduced the synchronization
error to 20 ms in comparison to the use of solely NTP with
250 ms or exclusively context markers with 1312 ms.

Instead of explicit synchronization actions, signal couplings,
or context markers, Hölzemann et al. [9] utilize the uniqueness
of variations present in accelerometer signals from inertial
measurement units (IMU) to align the independently recorded
time series. The alignment, with an accuracy in the order of
seconds, requires sufficient periods of resting with low varia-
tions as well as similarities and accordance in the simultaneous
measurements at diverse locations such as head and wrist.

Ahmed et al. [10] present an approach that specifically aims
at the multi-modal detection and analysis of cough events
across multiple devices. Coughs are high energy events with a
concise length of 0.3 to 0.7 s and simultaneously perceptible in
audio and acceleration measurements. The alignment of these
sporadic events, by means of a normalized cross-correlation,
resulted in an average synchronization error of 46 ms.

The entirely different approach of Li et al. [18] presents a
time division multiple access (TDMA) protocol for medium-
access control (MAC) which utilizes the rhythm of the heart-
beat, instead of periodically broadcasted radio beacons, to
schedule the time slots in star-topology wireless BSNs. Based
on the assumption that body-worn devices have access to the
wearer’s vital signs, the “naturally synchronized” information
are used to allocate time slots, to achieve a coarse synchroniza-
tion without the need to enable the energy-consuming radio to
receive periodic timing information.

B. Human Heartbeat Detection

The heart is the center of the human cardiovascular system
and pumps the blood through the entire body. This physio-
logical activity can be captured by means of different sensing
modalities. Since each contraction of the cardiac muscle is
initiated through action potentials, their accumulated electric
field can be detected using electrocardiography (ECG). First
experiments and the actual invention of traditional ECG can be
traced back into the end of the 19th century. It is considered a
gold standard in today’s medicine, and an essential instrument
to diagnose heart diseases and to reliably monitor heart rate.
Each heartbeat generates a wave pattern with unique attributes,
labeled with P, Q, R, S, and T, caused by superimposed stimuli
in the cardiac muscle. To obtain the ECG signal’s typical, well-
known contour, multiple wet electrodes are placed at specific
locations on chest and extremities. Depending on the applied
lead system, they detect the local electric potential differences
along e.g. 12 leads, paired electrodes. The high reliability and
accuracy of ECG originates from the sharp R peak of the
characteristic QRS complex [19]. With its large amplitude,
resulting in a high signal-to-noise ratio (SNR), the peak serves
as a significant fiducial point that is less affected by noise and
interference, and reliably detectable at most body locations.
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Fig. 1: PulSync processing pipeline for the alignment of independent wearables’ time bases, applied on ECG measurements.
Example from dataset 716 [15]: subject 23, Einthoven II (orange) and resembled V2-V1 (blue) leads. From left to right:
1) original ECG signals, labeled with precise fiducial points at the prominent R peaks (red); 2) derived HRV interval
functions (bottom) from the original, unaligned time series (top); 3) identification of the positions with maximum accordance
(red) and determination of the time series’ relative alignment offset ∆ using normalized cross-correlation; exemplary correlation
of five 60 s segments αp with their associated reference βq; 4) aligned interval functions (bottom) and ECG time series (top).

Therefore, ECG allows to determine the heart rate by either
counting the number of peaks per unit time or by calculating
the individual reciprocal of the R-R inter-beat interval (IBI)
for an instantaneous measure [20].

Progress in signal processing and miniaturization are suc-
cessively enabling advanced ECG techniques aiming at smaller
and more convenient wearables for ambulant health care, long-
term monitoring, and fitness tracking. Measured at a single
spot [21], [22], such as the chest or even the wrist, the tiny
electrical bio-potential differences are ranging from hundreds
to only tens of µV [23] and require particularly sensitive
analog front-ends with a very high input impedance beyond
several GΩ [24]. The described setup inevitably results in a
less robust signal with a low SNR and, depending on the lead
orientation, the pulse can also show an inverse amplitude.
Advanced filters nevertheless enable to extract and identify
the prominent R peaks of the QRS complexes. An overview
of common algorithms is provided by Köhler et al. [19].

To date, most wearable devices apply the optical measure-
ment principle photoplethysmography (PPG) as it is cheap and
easy to implement, however its accuracy still did not catch up
with ECG [25]. PPG captures the pulse wave traveling through
blood vessels at a low propagation velocity of about 5.2 to
14.6 m s−1 [26] and thus suffers from a strong location depen-
dency and a varying pulse arrival time (PAT), depending on the
distance from the heart. In contrast, the electrical ECG signal
showed a lower-bound velocity of at least 250 m s−1 [14].

Consequently, the general feasibility of PulSync is evaluated
on ECG signals as the prominent R peaks can be assumed
to be immediately and simultaneously detectable throughout
the entire body surface. However, future enhancements might
enable to use other techniques such as the optical PPG.

C. Heart Rate Variability

The pointed ECG signal shows a pseudo-periodic run [13],
influenced by physiological processes which modulate its
intensity, amplitude, and pulse frequency [27]. The quasi-
random modulation of the IBI is of particular interest as it
contains frequency components which reflect parasympathetic
and sympathetic activities of the subject’s autonomic nervous

system [13]. The predominating variations are originated in
the phenomenon respiratory sinus arrhythmia (RSA) [28].

In medical context, the heart rate variability (HRV) is
often plotted in an interval tachogram, a discrete visualization
of enumerated, consecutive IBIs. However, as signals from
wearable devices tend to be affected by motion artifacts,
erroneously detected, spurious peaks can misalign and distort
these sequences. In contrast, the HRV interval function [13]
is a function of time, expressed through equation (4), that is
less and, in case of artifacts, only locally disturbed.

Due to their rich information content, features derived from
HRV are often used in biometric identification and authenti-
cation approaches [29], [30]. The location independence and
noise immunity in combination with a high degree of intrinsic
variation and uniqueness allows the use of the HRV similar
to a temporal fingerprint. This specificity enables PulSync to
align the time series obtained from independent devices.

III. SYNCHRONIZATION METHOD

PulSync utilizes the natural, irregular rhythm of the heart-
beat that is ubiquitously and simultaneously available through-
out the entire body surface of every living human. The ECG
signal’s prominent R peaks are significant fiducial points and
serve as coincident landmarks for the alignment. In contrast to
the commonly used motion signals, such as synchronization
actions in acceleration signals [6], the vital sign is continuously
available. Even at rest, the heart rate results in an update rate
of about 0.8 Hz (48 bpm), but it can vary within the extreme
boundaries ranging from 0.5 Hz in case of bradycardia up
to 3.0 Hz in case of tachycardia or heavy physical activity
(30–180 bpm) [31], [32]. Because the heart rate is modulated
by physiological processes, the heart rate variability (HRV)
interval function [13] is highly varying and unique like a
fingerprint, but also location-independent and hence identical
throughout the entire body surface. This singularity enables
to unambiguously align the independent recordings with their
local time bases by matching these HRV fingerprints.

The method’s processing pipeline is illustrated in Figure 1.
The heartbeat’s fiducial R points in real time t∗ define a unique
sequence of timestamps t∗i ∈ T ∗, allocated by equation (1).
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T ∗ := 〈t∗0, ..., t∗i , ..., t∗∞〉i∈N (1)

These heartbeat events t∗i are now captured by two exemplary
devices, denoted as A and B, which sample the individual
subsets T ∗A ⊂ T ∗ and T ∗B ⊂ T ∗, and hence translate t∗i into
their local times tA(t∗i ) and tB(t∗i ). These images T ∗A → TA
and T ∗B → TB are specified by the equations (2) and (3).

TA(T ∗A) := 〈tA0 , ..., tAj , ... | tAj = tA(t∗i )〉j∈N (2)

TB(T ∗B) := 〈tB0 , ..., tBk , ... | tBk = tB(t∗i )〉k∈N (3)

Because the devices were supposedly not started at the exact
same moment, ∀x ∈ N: tAx 6= tBx applies. Furthermore, as
the individual t∗i are not retrievable, the relative but unique
inter-beat distances (IBI) t∗i − t∗i−1 are used as a fingerprint
pattern T ∗W = 〈t∗x, ..., t∗x+w−1〉, with begin x and length w.
Because T ∗W is contained in both overlapping sequences
T ∗W ⊂ (T ∗A ∩ T ∗B), the sequence T ∗W ⊂ T ∗A is translated to
tA and used as a search window TW ⊂ TA in counterpart TB .

To enable this search by means of an approved tool, namely
the cross-correlation, the sequences are first transformed into
HRV interval functions by applying equation (4).

HRV (TX) := 〈 {tx, tx − tx−1} , ...〉‖TX‖−1
x=1 (4)

As these are sampled by means of the irregular heartbeat, the
sequences have to be linearly interpolated and resampled at the
sampling rate fhrv [13], resulting in α = intp(HRV (TA)) and
β = intp(HRV (TB)), for the devices A and B respectively.

To finally align α = 〈ai〉‖TA‖−1
i=1 and β = 〈bi〉‖TB‖−1

i=1 , just
like the associated TA and TB , a windowed segment αp ⊆ α
with position p is sliding along βq ⊂ β at position q. In
doing so, a normalized cross-correlation with Pearson product-
moment correlation (PPMC) coefficient r [33] is applied, as
defined in equation (5), to determine the position q̂ of maxi-
mum accordance argmax q(r(αp, βq)) between the segments.

r(αp, βq) :=
Cov(αp, βq)

σαp
σβq

=

∑w
i=1(ai − ā)(bi − b̄)√∑w

i=1(ai − ā)2
∑w
i=1(bi − b̄)2

(5)

The resulting difference p−q̂, based on fhrv, is then multiplied
by the factor fs/fhrv to translate it back into the original time
base of fs. The original time series can finally be aligned
according to the determined relative offset ∆ = fs

fhrv
(p − q̂),

by adjusting their time bases towards each other.

IV. EVALUATION

The performance of PulSync is evaluated using a pub-
licly available dataset from 25 subjects, monitored with two
independent ECG devices attached to the chest. The evaluation
primarily aims at the demonstration of the general feasibility
of the data-driven alignment, solely utilizing the HRV interval
function as a unique fingerprint. Furthermore, the accuracy of
the time series’ alignment is determined by means of a metric
based on the distance between their proximate peaks.

Fig. 2: The measurement setup (left) uses an exercise chest
strap at the torso, resembling a V2-V1 ECG lead (blue), and
the traditional Einthoven II ECG lead (orange). At the right,
an excerpt from the “sitting” recordings of subject 23 [15]
shows non-stationary physiological signals, superimposed by
strong baseline wandering; V2-V1 lead (blue), II lead (orange);
identified R peaks (red); matched by the PulSync method.

A. Dataset

The evaluation of PulSync requires recordings from different
measurement sites with the largest possible diversity. The final
decision was made on the research dataset 716 of Howell
and Porr from the University of Glasgow which is accessible
through the university’s research data portal [15]. The dataset
contains a large collection of two-minute ECG recordings from
25 subjects. Those performed 5 different tasks of which the
“sitting” subtask has been chosen due to the availability of
precise peak labels. In addition, the absence of motion artifacts
in these recordings supports the evidence of the general feasi-
bility independently from specific situations. As illustrated in
Figure 2, two independent devices recorded the ECG signals
at a sampling rate fs of 250 Hz, pretended synchronously,
with one device measuring the traditional Einthoven II lead
while the second one, an exercise chest strap ECG, resembled
approximately a V2-V1 lead. The dataset provides validated R
peak annotations with a very high precision of ±1 sample. As
no R peaks have to be identified before the derivation of the
HRV interval functions, the evaluation is independent from the
selection of any preprocessing and QRS detection algorithm
which in turn ensures the results’ reproducibility.

To enable the PPMC normalized cross-correlation, the HRV
interval functions have been linearly interpolated and regularly
resampled at fhrv of 25 Hz. The evaluation has been conducted
with a window length w of 60 s and an overlap of 1 %,
resulting in 101 segments of the V2-V1 lead’s HRV that were
shifted along and correlated with the reference HRV interval
function of the Einthoven II lead. Due to boundary effects of
datasets with large displacement, the first or last few segments’
r values were rejected to prevent a falsification of the results.

B. Ground Truth

There exist no publicly available datasets of two or more
independent and at the same time hardware-synchronized ECG
devices. Hence, a metric has been developed according to the
fundamental assumption that ECG signals are immediately and
simultaneously detectable throughout the entire body surface,
and delays of the signal can be neglected. In accordance with
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the previous assumption, equation (6) introduces the alignment
error ε(j, k). Applied to all proximate peaks, with a minimum
temporal distance, it serves as a metric of synchronicity.

ε(j, k) := tAj − tBk (6)

Any displacement of the time series results in an asynchronous
interference pattern that generates an ε 6= 0, with a large
standard deviation in presence of drift. In contrast, ideally
aligned time series result in a minimum ε→ 0, and a minimum
deviation as the peaks are simultaneously following the same
IBI pattern, respectively heartbeat rhythm.

C. Limitations

As no QRS detection has to be applied before deriving the
HRV interval functions, the evaluation is independent from the
selection of an algorithm, hence ensuring the reproducibility.

The previously made assumption, that the fiducial R points
are immediately and simultaneously detectable at every arbi-
trary location, is exclusively valid for ECG-related measure-
ments and the targeted accuracy in the order of a few ms.
As the electrical signals propagate in tissue with a lower-
bound velocity of at least 250 m s−1 [14], there are, how-
ever, perceivable delays. Assuming a maximum distance of
1.5 m between the measurement location on the body surface
and the heart, the origin of the electrical action potentials,
would consequently result in a worst-case delay of 6 ms. This
systematic bias adds to the accuracy determined, but still
results in a considerably better accuracy than the dataset’s
original, manual alignment, and is furthermore sufficient for
the targeted applications such as activity recognition [6].

D. Results and Discussion

Figure 3 shows a typical trace of the determined offsets ∆
for 100 matched segments αp along the reference βq . Only 1
of 101 determined r values is rejected due to boundary effects.
The quantization steps, intersecting the straight line, indicate
a small drift of about 2 samples over the entire 120 s length.

Figure 4 details the achieved accuracies for all 25 indi-
vidual recordings while the overall results are summarized
in Figure 5. Since the original recordings have been aligned
manually [15], the time bases are not ideally synchronized.
This is reflected by the original dataset’s large initial error
ε of −28.921± 89.015 samples (−115.684± 356.060 ms)

Fig. 3: Illustration of the determined offset ∆ for subject 1,
from 100 matched segments, 1 of 101 rejected. Visible quanti-
zation steps demonstrate the approach’s sensitivity and hence
the potential to detect even small drift across devices’ times.
PPMC r of 0.999 428± 0.000 159, ∆ in samples at 250 Hz.

Fig. 4: Illustration of the remaining alignment error ε for
all individual 25 subjects’ recordings. Differences between
proximate peaks after the alignment, ε in samples at 250 Hz.

for the proximate peaks with a minimum distance (middle,
orange). Accordingly, the misalignment (left, red), determined
by means of the presented method, range from 0.035 s (sub-
ject 5) to even 4.961 s (subject 19) with an overall average
ε of 15.328± 428.023 samples (0.061± 1.712 s). In contrast,
the proposed alignment approach resulted in a remaining aver-
age error ε of −0.714± 3.440 samples (−2.856± 11.427 ms).
Besides small drift, another reason for the large standard de-
viation might be the HRV interval functions’ coarse temporal
resolution, fhrv of 25 Hz, to limit the computational efforts.

Without exception, for all recordings and valid segments,
Pearson’s r is virtually 1 and the deviation negligible as the
two devices’ HRV interval functions are almost identical. For
signals interfered by motion artifacts, this ideal value will
likely decrease according to the ratio of the affected heartbeats.

V. CONCLUSION

We presented PulSync, a data-driven method for the align-
ment of independent time bases across multiple wearable
devices, which exploits the local heartbeat measurements of
the common user. We propose to utilize the derived heart rate
variability (HRV) interval functions as unique and location-
independent temporal fingerprints that enable the distinct and
accurate matching of sensor data from body-worn devices.
Our evaluation results demonstrate not only the approach’s
general feasibility, but also show a promising accuracy of
−0.714± 3.440 samples and accordingly −2.856± 11.427 ms
at 250 Hz sampling rate. The achieved accuracy is superior to
a manual alignment and is located between online, wireless
synchronization techniques in the order of µs to few ms
[3]–[5] and the offline, motion-based methods in the order of
tens to hundreds of ms [2], [6]–[10]. Our evaluation revealed
the approach’s potential to sensitively track the relative drift
between devices’ local time bases. The method is particularly
promising as an accurate and energy-efficient method for
wearables that contain ECG, as it can be applied exclusively
on recorded data and then neither requires an extra channel
nor imposes an overhead on radio communication. Especially
scenarios in which body-worn devices are deployed over long
term, and which avoid online synchronization methods due to
energy requirements, will benefit from our PulSync method.

PulSync is implemented as a Python toolbox for the offline
alignment of ECG recordings. It is available for public down-
load on this website: https://github.com/fwolling/PulSync

PerHealth 2021: 5th IEEE PerCom Workshop on Pervasive Health Technologies

192



Fig. 5: Summary of the overall evaluation results. Y axes:
error ε distribution in samples at 250 Hz. Left (red): ε of
assigned peaks shows initial misalignment of the original data.
Middle (orange): ε of interference between proximate peaks in
original, unaligned data. Right (green): ε of proximate peaks
after the alignment. Note the different scaling of the y axes.

ACKNOWLEDGMENTS

The main author’s research visit at the Biomimetics and
Intelligent Systems Group of the University of Oulu, Finland
has been supported by the University of Siegen and the
German Academic Exchange Service (DAAD). The data has
been processed by the HoRUS cluster, University of Siegen.

REFERENCES

[1] R. Ohmura, F. Naya, H. Noma, and K. Kogure, “B-pack: A bluetooth-
based wearable sensing device for nursing activity recognition,” in
Wireless Pervasive Computing (ISWPC). IEEE, 2006, pp. 1–6.

[2] C. Wang, Z. Sarsenbayeva, C. Luo, J. Goncalves, and V. Kostakos,
“Improving wearable sensor data quality using context markers,” ser.
UbiComp/ISWC ’19. ACM, 2019.

[3] M. Ringwald and K. Romer, “Practical time synchronization for blue-
tooth scatternets,” in 4th International Conference on Broadband Com-
munications, Networks & Systems, 2007, pp. 337–345.

[4] M. Pflugradt, I. Fritzsch, S. Mann et al., “A novel pulseoximeter for
bluetooth synchronized measurements in a body sensor network,” in
EDERC’14. IEEE, 2014, pp. 21–25.

[5] H. J. G. Roberto Casas, “Synchronization in wireless sensor networks
using bluetooth,” in 3rd International Workshop on Intelligent Solutions
in Embedded Systems. IEEE, 2005, pp. 79–88.

[6] D. Bannach, O. Amft, and P. Lukowicz, “Automatic event-based syn-
chronization of multimodal data streams from wearable and ambient
sensors,” ser. EuroSSC’09. Springer, 2009, pp. 135–148.

[7] T. R. Bennett, N. Gans, and R. Jafari, “Multi-sensor data-driven syn-
chronization using wearable sensors,” ser. ISWC’15. ACM, 2015.

[8] ——, “A data-driven synchronization technique for cyber-physical sys-
tems,” in 2nd International Workshop on the Swarm at the Edge of the
Cloud. ACM, 2015, pp. 49–54.

[9] A. Hölzemann, H. Odoemelem, and K. Van Laerhoven, “Using an in-ear
wearable to annotate activity data across multiple inertial sensors,” ser.
EarComp’19. ACM, 2019.

[10] T. Ahmed, M. Y. Ahmed, M. M. Rahman, E. Nemati, B. Islam,
K. Vatanparvar, V. Nathan, D. McCaffrey, J. Kuang, and J. A. Gao,
“Automated time synchronization of cough events from multimodal
sensors in mobile devices,” in International Conference on Multimodal
Interaction. ACM, 2020, pp. 614–619.

[11] Y.-L. Zheng, X.-R. Ding, C. C. Y. Poon, B. P. L. Lo, H. Zhang, X.-
L. Zhou, G.-Z. Yang, N. Zhao, and Y.-T. Zhang, “Unobtrusive sensing
and wearable devices for health informatics,” IEEE transactions on bio-
medical engineering, vol. 61, no. 5, pp. 1538–1554, 2014.

[12] A. K. Yetisen, J. L. Martinez-Hurtado, B. Ünal, A. Khademhosseini, and
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