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Abstract—Inertial measurement units, such as those embedded
in many smartwatches, enable to track the orientation of the
body joint to which the wearable is attached. Tracking the user’s
entire body would thus require many wearables, which tends
to be difficult to achieve in daily life. This paper presents a
calibration-free method to match the data stream from a body-
worn Inertial Measurement Unit, to any body joint estimates that
are recognized and located from a camera in the environment.
This allows networked cameras to associate detected body joints
from nearby humans with an orientation stream from a nearby
wearable; This wearable’s orientation stream can be transformed
and complemented with its user’s full body pose estimates.
Results show that in multi-user environments where users try
to perform actions synchronously, out of 42 joint candidates,
our calibration-free method obtains a perfect match within 83
to 155 samples (2.8 to 5.2 seconds), depending on the scenario.
This would facilitate a seamless combination of wearable- and
vision-based tracking for a robust, full-body user tracking.

Index Terms—wearable inertial sensing, body pose capture,
body joint tracking

I. INTRODUCTION

Wearable devices increasingly integrate inertial measure-
ment units (or IMUs) and wireless transceivers, as both these
technologies have matured into miniature, low-cost chips. This
allows tracking of a user’s physical movements for a myriad
of tasks, such as gesture detection or activity recognition.
This, however, is only possible for the body joint where this
wearable is worn, for instance the lower arm in wrist-worn
wearables. At the same time, breakthroughs in computer vision
and depth cameras made it possible to detect human users and
most of their individual body joints from cameras installed in
the environment. These systems tend to work increasingly well
but are limited to occlusion free environments and favorable
lighting conditions. This paper presents a method that allows
combining both modalities in real-time and without the need
of camera-to-IMU calibration, by linking wireless data streams
from IMU-based wearables to sets of joints recognized in a
camera’s field of view, as depicted in Figure 1.

Through the wireless capabilities of the wearables, it is
possible to stream the orientation of the wearable, and thus the
body joint that it is attached on, to cameras in the environment.
These cameras tend to be able to capture multiple body joints
in real-time, provided that those joints are not blocked by
surrounding objects, people, or are not out-of-frame. These

Fig. 1. Our method enables to match wireless streams of IMU data from a
wearable device (red) to sets of body joints that have been optically tracked
from an environmental camera (green). Once associated, the camera could
then send back the user’s full body poses to the right wearable as a service.

camera-based systems in the environment could return the
full-body joint estimations back to the user’s wearable as a
service, thus making the wearable aware of its user’s full
body posture over time, without requiring users to wear a
large number of devices. The body-worn devices on the other
hand are not susceptible to occlusion or lighting conditions
and can provide valuable data for a seamless body tracking
or to resolve ambiguities. We envisage such complementing
modalities to be extremely useful in applications that require
full-body tracking, such as VR, character simulation, gesture
controlled systems, or activity recognition. In the case of
an unknown sensor setup, our method furthermore helps
reducing the complexity for setting up such applications as
it is able to automatically associate a body-worn device with
its respective limb. A different, but promising application is
indoor localization, where a person’s position, as estimated
from a camera system, can be forwarded to a wearable that
was identified to be worn by that person.

II. RELATED WORK

Since the introduction of inertial sensors, several studies
have been published that use inertial data to estimate where
on the body these are likely attached. Early approaches to
detect sensor placement from acceleration and gyroscope data
of 4 or 5 sensors respectively during different activities [1], [2]
have shown 100% accuracy for a walking activity, and up to
82% for several real-life activities. In [3], the authors further
explored how sensor placement variations can influence human
action recognition: It typically takes some time (up to a few
minutes) to reach the peak accuracy, studies focusing on the
sensor placements on head, wrist, torso, left breast pocket, and

WristSense 2021: 7th Workshop on Sensing Systems and Applications using Wrist Worn Smart Devices

978-1-6654-0424-2/21/$31.00 ©2021 IEEE 611



front and back trouser pockets. A variety of classifier-based
approaches have been proposed to see where inertial sensors
are attached to: [4] uses a Support Vector Machine (SVM) to
identify the location of 10 accelerometers on various parts of
the body with an accuracy of up to 89%. Converging times,
however, are not given and the method can not distinguish
left from right body locations. A more frequent use of the
right arm is assumed. In [5], a decision tree is trained on
17 inertial sensors placed on different limbs and achieves an
accuracy of 97.5% in estimating the sensor placement. The
setup requires a known sensor configuration and a walking
pattern with sufficient arm movement (one participant with
insufficient arm movement was excluded). Without knowing
the sensor configuration, the accuracy drops to 75.9%. In
[6], the sensor alignment and assignment on the lower body
is estimated using deep learning. An accuracy of 98.57%
is reported on the assignment classification using synthetic
and real acceleration and gyroscope data for training. In [7],
walking and non-walking accelerometer data from 33 partici-
pants, each wearing 5 accelerometers at ankle, thigh, hip, arm,
and wrist, was recorded and the placement of each sensor
estimated. Estimation was done through splitting the data in
non-overlapping 10s windows and finding a walking motion
with a SVM. If walking was detected, the location of the
sensors is classified in a second step. Overall, a classification
accuracy of up to 96.3% is reported using a majority voting
strategy. Other works ( [8], [9]) estimate the acceleration of
feature points in a RGB or RGB-D stream and compare it
to the acceleration readings of an accelerometer attached to a
limb or an object to identify its location in the image domain.

As wearable-embedded inertial sensors evolved into Iner-
tial Measurement Units (or IMUs), combining internal 3D
accelerometer, gyroscope and magnetometer data into quater-
nions that reflect more accurate orientation, IMUs have been
proposed to track the user’s body pose (e.g. [10], [11],
[12]). Orientations of most body joints can also be obtained
from external cameras [13]. In this paper, instead of using
accelerometer or gyroscope data as in previous work, we
propose a novel method that uses the produced quaternions by
two very different systems: The wearable’s IMU data stream,
and the potential body joints detected from an external camera.
Matching these two, however, requires a set of steps as this
process is far from trivial.

III. METHOD

In the following, we describe the preprocessing steps, as
well as hurdles when matching a wearable IMU’s quaternions
to those coming from an external camera, after which we
present four different comparison measures to identify the dis-
tance from the IMU orientation to the many joint orientations
of multiple persons, as observed from a camera.

A. Preprocessing and Calibration Considerations

Both, a camera’s and an IMU’s orientations, are expressed in
their distinct reference frame where the camera typically uses
its view plane and pixel coordinates with the y-axis being the

Fig. 2. From the top left to the bottom right: The camera’s global and
local, and the IMU’s global and local coordinate systems. Transitions between
these coordinate systems are marked with arrows and can be computed by
multiplying with the respective quaternion q.

up-vector, and where the IMU typically uses the geomagnetic
north and gravity vector as reference with the z-axis being the
up-vector. A rotation around the up-direction therefore results
in different orientations, depending on the device’s reference
frame. A simple and fast way to obtain an improvement
in calibration, given the devices’ coordinate mappings are
known, is to shift the measured orientations to a common
coordinate system by remapping their quaternions’ bases such
that they agree upon the axes of rotation. This step is not
necessarily required for our proposed method, but enables the
use of simple quaternion distance metrics and subsequently
a comparison with our method. Since both reference frames
still are not guaranteed to match, as will be elaborated in the
following, the simple methods are limited to almost aligned
reference frames. In a second step, the wearable IMU data
is down-sampled to match the camera’s sampling rate, using
spherical linear interpolation.

As mentioned above, the camera and the IMU sensors do not
share a common coordinate system. Fig. 2 illustrates the four
different reference frames to be considered: The global and
local camera frames FCG and FCL, and the global and local
IMU frames FIG and FIL. Similarly there exist four distinct
transitions between these. Transitions FCG

qC(t)−−−→ FCL and
FIG

qI(t)−−−→ FIL define how to get from the camera or IMU
global reference frame to the respective local camera or IMU
frame at time t and are obtained as quaternion measure-
ments qC(t) and qI(t). The other transitions are defined as
FIG

qG−−→ FCG to get from the IMU global to the camera global
reference frame, and as FIL

qL−→ FCL to get from the IMU
local to the camera local frame respectively. The quaternion
qG denotes the constant orientation offset of the global camera
frame to the IMU frame and accounts for the fact that the
camera can arbitrarily be placed in the environment, whereas
qL denotes the rotational alignment offset of the IMU when
placed on a limb, given the camera can estimate the true
limb orientation. To switch between the different reference
frames, consider the equality of the transitions FIG

qI(t)−−−→ FIL

and FIG
qG−−→ FCG

qC(t)−−−→ FCL
qL−→ FIL. Expressed as
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quaternion equation, we get (1) with ◦ denoting the quaternion
or Hamilton product.

qI(t) = qL ◦ qC(t) ◦ qG (1)

Both, qG and qL, usually are not known and need to
be determined through calibration, also known as the hand-
eye calibration problem in robotics. To solve the calibration
problem, we need a series of measurements qI(t) and qC(t).
The transition from qI(t) to qI(t + i) (i ∈ N+) is given as

FIL
q−1
I (t)
−−−−→ FIG

qI(t+i)−−−−−→ FIL. Similarly, using the camera

measurements qC(t), we have the path FIL
qL−→ FCL

q−1
C (t)
−−−−→

FCG
q−1
G−−→ FIG

qG−−→ FCG
qC(t+i)−−−−−→ FCL

q−1
L−−→ FIL. The

camera offset qG cancels out and we obtain (2).

qI(t+ i) ◦ qI(t) = qL ◦ qC(t+ i) ◦ qC(t) ◦ qL (2)

Substituting qA = qI(t+ i) ◦ qI(t), qB = qC(t+ i) ◦ qC(t),
and qX = qL yields the (reordered) calibration equation (3).

qA ◦ qX = qX ◦ qB (3)

Finding the IMU limb offset qX = qL using a series of n
different observations now is subject to:

argmin
qX

∑
n∈N+

||qA,n ◦ qX − qX ◦ qB,n|| (4)

Explicitly solving (4) does not yield a match of both modal-
ities, but for each IMU a specific IMU to limb offset estimate
qX with an unclear outcome for non-matching orientation
streams. It is susceptible to noise and unstable orientation
estimates and furthermore, it is a very expensive operation that
would have to be repeated for every IMU for every observed
joint in camera space. Instead, we aim for a calibration free
matching method that does not need to solve (4). With (3) we
already are independent from the camera offset and only the
IMU-limb alignment has to be considered as will be detailed
in section III-B. After matching and if required, calibration
only needs to be performed once per IMU. An algorithm to
solve (4) can for instance be found in [14] from which we
also adapted above calibration scheme.

B. Quaternion comparison measures

In this section, we introduce four different comparison
measures that can subsequently be used to match quaternions.
Assuming small camera-IMU and IMU-limb offsets, from (1)
follows that qI ≈ qC . A first, straightforward option thus is to
use the (1) Quaternion angle or geodesic angle between two
quaternions. It is computed with the dot product as in (5).

dq(qI , qC) = 2 arccos |〈qI , qC〉| (5)

As estimates of the limb joints from camera-based systems
tend to be unstable and suffer from randomly swapping around
the limb’s direction, a second measure would be the (2) Stable
quaternion angle. It makes use of the quaternion swing-twist-
decomposition and only keeps the swing part around the limb

direction, in our case the x-axis. The swing quaternion then is
forwarded to (5) to obtain (6):

dq,stable(qI , qC) = dq(swing(qI), swing(qC)) (6)

Using the stable quaternion angle also is useful if the IMU’s
rotation around the attached limb is not known or when
from the camera-based pose estimation only joint positions
are available. The sensor’s axis in the direction of the limb
however has to be known.

Since the assumptions for small reference system offsets
made in above metrics do not hold in general, we propose the
(3) Independent quaternion angle. Reorganizing equation (3)
to qA = qX ◦ qB ◦ qx and considering that the real parts at
both sides need to be the same, yields:

<(qA) = <(qX ◦ qB ◦ qx)
= w2

xwB − wx~vX · ~vB + wB~vX · ~vB
+ wB~vX · ~vX + ~vX × ~vB · ~vX

= wB(w
2
X + ~vX · ~vX) = wB = <(qB)

(7)

From (7) follows that the real parts of qA and qB are
equal, which means that we have a way to discard qX and
thus only depend on the measurements. Intuitively, (7) can be
understood as: the amount of rotation or the angle in between
two successive measurements at times t and t+ i measured by
both sensors needs to be the same, independent of the direction
or axis of rotation of each. This makes sense since the limb
rotation does not depend on the sensor alignment.

With qA = qI(t + i) ◦ qI(t) and qB = qC(t + i) ◦ qC(t),
both representing the rotation from the respective quaternion
q(t) to q(t+ i), and considering that both comprise the same
amount of rotation in between time points t and t+ i, we can
compute the angle between both using (5). The independent
distance metric then is defined as:

dind(qI , qC) = |dq(qI(t), qI(t+i))−dq(qC(t), qC(t+i))| (8)

Considering stability issues of the camera-based limb ori-
entation estimation, similar to the stable quaternion angle, we
introduce the (4) Independent stable quaternion angle. It is
based on (8), but instead only uses the swing component of a
quaternion, as stated in (9).

dind,stable(qI , qC) = dind(swing(qI), swing(qC)) (9)

C. Discrete Joint Matching
To find the body joint that was picked up by the camera

and that matches the wearable’s IMU orientation sequence
best, first a distance matrix d[k][n] for each camera joint k
and sample n is computed using any of the four distance
metrics described above. Given a distance matrix d, (10) then
computes the most likely camera joint k the IMU is attached
to at time t and within a window comprising w samples.

match(d, t, w) = argmin
k

1

w

t+w∑
n=t

∣∣∣d[k][n]∣∣∣ (10)

Equation (10) allows to identify the limb position of an IMU
at any time point independently, even if its body location has
changed in the meantime.
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IV. EXPERIMENT DESIGN

To validate our method, we collected a dataset in which
three participants were simultaneously captured by a Kinect v2
depth camera while performing near-synchronized movements.
One of the study participants was wearing an IMU device that
delivered quaternions wirelessly to a system attached to the
Kinect, in which also all the participants’ joints are calculated
from the depth data in real-time. The IMU was worn in two
different constellations: (1) on the wrist, as one would wear
a smart watch, and (2) in the user’s pocket, as one might
carry a smartphone. To make the task of estimating on which
joint (of overall 42 optically detected joints) the IMU is worn
particularly challenging, these three different scenarios with
high synchronicity were chosen to evaluate the performance
of the methods:
• (A) The Macarena line dance, in which participants

tend to move one limb at a time, in a synchronous
fashion. Participants were at the start of the recording
only sightly familiar with the Macarena movements and
started asynchronous, though they improved after a few
repetitions through listening to and watching the music
video as they performed the dance.

• (B) The head, shoulders, knees and toes exercise for
children, causing participants to move their left and right
limbs synchronously. Motion sequences are shorter for
this scenario, and participants quickly became familiar
with the few movement sequences for this exercise.

• (C) The participants walking along the room parallel to
the camera’s line of sight in a synchronous fashion. In
this scenario, the participant with the wearable set the
pace whereas the two others were trying to walk in the
same pace and rhythm.

For scenarios (A) and (B), the IMU was worn on the right
wrist with negligible IMU-limb offset, and for the walking
scenario (C), the IMU was worn in the front left pocket with
the IMU not being properly aligned to the limb. The camera-
IMU offset was about 25° and the IMU was worn by the
same participant in all scenarios. Recording times are (A) 95 s,
(B) 45 s, and (C) 64 s.

Sensor systems. The wearable IMU that we used in the
experiment is a custom wireless sensor module that is built
around the Bosch BNO055 IMU, delivering the sensor’s
orientation as a quaternion at a sampling speed of 100 Hz.
It can be used as a single sensor, or combined in a network
of multiple IMUs, using Nordic Semiconductor’s nRF24L01
low-power transceivers. It runs approximately for 18 hours
continuously with a miniature 400 mA battery. For the esti-
mation of the users’ joints from the environment, a Kinect
v2 framework is used as a well-known depth camera system
that performs optical tracking of users’ body joints through a
method presented by Shotton et al in [15]. For the datasets
generated in this paper’s experiments, we have stored the
detected body joints of all users, as quaternions, at a sampling
rate of 30 Hz, thus sub-sampling the wearable’s stream, to be
able to focus in the results on the matching itself.

V. EVALUATION RESULTS

For the evaluation results below, equation (10) is evaluated
for all distance measures (also see III-B). For the independent
metrics (8) and (9), the time offset parameter is set to i = 7.
At lower values, especially at i = 1, the estimation accuracy
degrades as there is insufficient movement in between succes-
sive samples. An example visualization of the distance matrix
from the stable quaternion metric is shown in Fig. 3. It nicely
visualizes the dynamics of the joint distances caused by the
rhythm of the Macarena line dance. The IMU hereby was at-
tached to the ”Body3/WristRight” joint and the corresponding
joint classification is highlighted in magenta. Although locally
other joints have a smaller distance, within broader windows
it will overall have the closest distance to the IMU.

Fig. 3. Joint distances from stable quaternion distance, equation (6), of the
Macarena line dance, with evaluated joints in the rows and samples in the
columns. Blue being low and yellow being high distances. Joint classification
using a window size of w = 20 samples is indicated with magenta edges.

Joint matching accuracy. To assess the performance of
the different metrics, the window length w step wise is
increased and for each w all samples are classified by moving
the window over the respective distance sequence. The joint
matching accuracy is computed as the amount of correctly
classified window positions divided by the total number of
window positions available for a certain w. Figure 4 shows the
matching accuracy of all three scenarios against an increasing
window length w of the moving window.

In scenario (A), the stable independent angle distance is
the only metric that achieves 100% accuracy. It converges
beyond window lengths of w = 128 samples (4.27 seconds)
and already is close to 100% at w = 96 (3.2s). The stable
quaternion metric reaches its maximum of 87% at w = 195
(or 6.5s) and the quaternion angle metric stays with small
deviations at about 45% over all window lengths. The inde-
pendent quaternion angle peaks with 17% at w = 14 and
afterwards decreases to 0%. Since the Kinect v2 has difficulties
in correctly estimating the twist orientation of wrist joints,
with large angular offsets on successive samples, the methods
that are not stable against such errors can not correctly assign
the wrist-worn IMU to the matching joint. Especially the
independent quaternion angle requires successive samples of
both streams to have similar changes in rotation.
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Fig. 4. Accuracy of the different matching methods, plotted for the different
experiment scenarios with increasing window sizes w. The IMU sensor was
worn on the wrist in the Macarena and Head, shoulders, knees, and toes
scenarios. For walking, it was worn on the hip. The proposed independent
stable quaternion angle metric can accurately match the correct joint in all
scenarios. Depending on the scenario, other metrics nevertheless can show a
slightly better performance.

A similar behaviour can be observed in scenario (B). The
large errors in the camera’s wrist orientation estimates cause
the independent quaternion angle metric to match other joints
that comprise smaller deviations around any axis, resulting
in close to 0% or 0% accuracy at all window lengths. The
stable independent quaternion angle is able to remove the
twist rotation of the wrist and converges to 100% accuracy
above a window length of w = 155 samples (or 5.2s). The
stable quaternion distance metric in this scenario converges
fastest to 100% accuracy above window lengths of about
w = 75 samples (2.5s). The quaternion distance requires at
least w = 246 samples (or 8.2s) to accurately match the correct
joint. In contrast to scenario (A), here both the stable and
normal quaternion angle metrics can more efficiently match
the correct joint. One reason for this might be that during the
Macarena line dance only one limb at a time is moved while
during the head, shoulders, knees, and toes exercise many
limbs are moved simultaneously and thus any ambiguities can
be resolved within smaller time windows.

For the walking scenario (C), only the independent quater-
nion angle metric and its stable variant are able to correctly
assign the IMU to the upper left leg. The first metric hereby
converges faster to 100% accuracy at window lengths above
w = 83 samples (2.8s), closely followed by the stable version
at above w = 108 samples (3.6s). All other distance metrics
can not at all match the IMU to the correct camera joint. The
reason is that in this scenario the IMU is not well aligned to
the limb and due to this offset any other random camera joint
appears to be closer to the sensor orientation at any time.

IMU-to-camera offset. For the case in which the IMU-to-
camera offset is not known in advance, we model the effect
on the assignment accuracy by step-wise increasing the offset
from -180° to 180° around the camera’s up-axis, with 0° being
the unchanged orientation. Figure 5 plots the accuracy of all
activities against varying IMU-to-camera offsets at a fixed
window length of w = 50 samples.

Fig. 5. Accuracy of the assignment with different IMU-to-camera offsets
along the up-axis at a window length of 50 samples, for the three scenarios.
Top: Macarena (A); Middle: Head, shoulders, knees, and toes (B); Bottom:
Walking (C). For scenarios (A) and (B), the IMU was worn on the wrist, for
scenario (C), the IMU was worn on the hip.

In scenario (A), the accuracy of the quaternion angle peaks
with 47% at -3°. Its stable variant reaches its maximum of 90%
in between 18° and 49°. Both metrics decrease to 0% to both
sides. The stable independent quaternion angle shows at 10° an
accuracy of 85% and has a decreased performance to both
sides, however without dropping to 0%. As this metric relies
on the swing-twist decomposition of the measured quaternions,
it is not fully independent from the IMU-to-camera offset. The
independent quaternion distance is not affected by any rotation
offset, but has a low accuracy of about 10% due to the unstable
wrist orientation estimates of the Kinect v2.

A similar behaviour can be observed for scenario (B). Here
the quaternion angle metric peaks at -10° with an accuracy
of about 50%, and the stable quaternion distance reaches its
maximum of 100% between 3° to 35°. Both metrics drop to
0% to both sides. The independent quaternion angle again can
not deal with the wrist error while its stable variant has its
maximum accuracy of about 93% in the range of 7° to 22° and
maintains an accuracy of above 45% at all other offsets.

In scenario (C), the quaternion angle metric peaks at
65° with an accuracy of 67% and drops to 0% at both sides.
Its stable version remains at 0% for all camera offsets. We
assume that the quaternion distance metric is at the 65° offset
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more likely to match the correct joint due to comprising addi-
tional rotation information around the x-axis. The independent
quaternion angle does not suffer from erroneous camera joint
estimates and stays at an accuracy of 96% over the whole
range of camera offsets, showing the advantage of truly being
independent. Its stable version has its maximum accuracy of
92% between -43° and 25°. Two local minima of about 20%
and 27% are between -127° to -98° and at 66°.

VI. DISCUSSION

Our dataset comprises many relevant challenges of IMU to
camera joint matching, namely synchronous movements, erro-
neous joint orientation estimates, IMU-limb and IMU-camera
misalignments, and asynchronous sampling rates. It, however,
does not contain a scenario with regular occlusion events and
it is with only three different scenarios, three participants and
only one IMU per scenario somewhat limited to draw final
conclusions about its robustness in real world environments.
Especially in case of occlusions, its performance is likely
to decrease significantly, but once a joint was successfully
associated, a continuous tracking through both complementary
modalities is facilitated. Both independent quaternion angle
methods do not require calibration, but, in contrast to both
other metrics, require user movement for the matching process
in all circumstances. The independent quaternion distance
metric, however, is susceptible against estimation errors. Its
stabilized version can compensate for that, but is, due to
the swing-twist decomposition being affected by calibration
parameters, less robust against calibration offsets. All proposed
metrics only require a few processor instructions and can be
computed in parallel for all IMU-camera joint combinations,
thus being highly performant even for large numbers of joints.
The most important tasks for the future work are to evaluate
the methods on a broader dataset, including more sensors as
well as occlusion events, and to tackle the dependency of the
swing-twist decomposition on calibration parameters.

VII. CONCLUSIONS

We presented a method that allows the quaternion stream
from a wearable IMU sensor to be matched, on the fly,
with quaternion estimates extracted from an optical sensor
(e.g., a depth camera), thus allowing to track the user’s full
body posture over time. Our method accounts for different
coordinate systems, as well as inaccuracies that tend to be
present in optical body pose estimation frameworks (such as
sudden twists in the estimates from the wrists).

We performed a series of experiments with participants
performing synchronous dance routines, using 30 Hz depth
cameras and body-worn IMU sensors. Results show that our
method can find the matching joint of the correct user within
75 to 128 samples (or 2.5 to 4.3 seconds) at the wrist,
using the stable or the independent stable quaternion metrics
respectively. The independent stable metric overall is the better
measure in scenarios (A) and (B) since it delivers optimal
results in both. For walking, when the IMU is placed at the
pocket of the upper leg, best results are obtained from any of

both independent quaternion metrics that find the matching
joint within 83 to 108 samples (or 2.8 to 3.6 seconds).
While the standard quaternion distance metrics may have their
benefits in calibrated scenes, the calibration independent met-
rics have their big advantage in environments with unknown
setups. Both the stable and normal distance measures have
shown to have their specific area of application, depending on
the stability of the joint orientation estimates.

The dataset and the source code for our method are pub-
licly available at https://ubicomp.eti.uni-siegen.de for further
development and to support reproduction of our results.
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