
Data Augmentation Strategies for Human Activity
Data Using Generative Adversarial Neural Networks

1st Alexander Hoelzemann
Ubiquitous Computing

University of Siegen
Siegen, Germany

alexander.hoelzemann@uni-siegen.de

1st Nimish Sorathiya

University of Siegen
Siegen, Germany

sorathiyanimish9@gmail.com

2nd Kristof Van Laerhoven
Ubiquitous Computing

University of Siegen
Siegen, Germany

kvl@eti.uni-siegen.de

Abstract—Previous studies have shown that available bench-
mark datasets from the field of Human Activity Recognition are
of limited use for Deep Learning applications. This can be traced
back to issues in the quality, the scope, as well as in the variability
of the datasets. These limitations often lead to overfitting of
networks and thus to results that are only conditionally general-
izable. One way to counteract this problem is to extend the data
by using data augmentation techniques. This paper presents an
algorithm and compares two augmentation strategies: (1) user-
wise augmentation and (2) fold-wise augmentation to extend the
size of a dataset here shown on the PAMAP2 dataset, with an
arbitrary number of synthetic samples. These synthesized data
resemble the user- and activity-specific characteristics and fit
seamlessly into the dataset. They are created by a recurrent
Generative Adversarial Network, with both the generator and
discriminator modeled by a set of LSTM cells to produce the
synthetic time-series data. In our evaluation, we trained four
DeepConvLSTM models with supervised learning, three times
with a LOSO cross-validation: one baseline model and two times
with additional data but different augmentation strategies, as
well as one model without cross-validation that monitors the
synthesized data quality. The compared augmentation strategies
demonstrate the impact as well as the generalized nature of the
augmented data. By increasing the size of the dataset by factor 5,
we improved the F1-Score by 11.0% with strategy (1) and 5.1%
with strategy (2).

Index Terms—Neural networks, Long short term memory,
Recurrent neural networks

I. INTRODUCTION

In the context of deep learning and neural network devel-
opment, having sufficient data to train and test algorithms is
crucial for obtaining a high-performance classification model.
However, this essential step is often hindered by the fact
that not enough data is freely available for many types
of applications. For this reason, methods for data synthesis
have been developed in the past years. These algorithms are
already widely used in computer vision and natural language
processing, however, they are still in their early stages of
development with regard to activity recognition from wearable
inertial sensors. In order to accelerate research in the field
of Deep Learning for Human Activity Recognition, it is
essential to increase the scope of its public datasets in the
future. We already know from other disciplines that more
data can lead to more precise results and is an effective tool
against overfitting. The further development of augmentation

and synthesis algorithms can serve as a catalyst that will enable
us to close the current gap in the available data. In this paper,
we propose a neural network architecture based on [1] and
further developed to generate data for an arbitrary number
of samples of sensor based activity data. The network can
be trained to synthesize both subject- and activity-specific
characteristics. The quantitative enlargement of the dataset
improves the classification potential of the neural network on
the one hand, and protects it efficiently against overfitting
on the other hand. Our tests show that these artificial data
can be used to increase classification capabilities of a neural
network model, due to an increase of variability and scope of
the dataset, but the impact varies depending on how the data
was synthesized and merged back into the initial dataset.

II. RELATED WORK

Related work is reviewed by focusing on three disciplines:
Human Activity Recognition, Machine Learning for Human
Activity Recognition and Data Augmentation for sensor based
data.
HUMAN ACTIVITY RECOGNITION (HAR). Experiments
with deep learning architectures and human activity data have
high demands on the available datasets. These datasets must
meet quality requirements to be attractive for deep learning
research. The quality is mainly characterised by the scope
and variability of the data. A dataset that is too small and
doesn’t reach the requirements, tends to underfit the model [2].
Beside of these two very important attributes, also less obvious
characteristics are decisive, such as the number of subjects, the
number and type of sensors used, as well as their sampling
rate and placement on the body [3], label accuracy [4], and
synchronisation accuracy between sensors [5]. Regardless of
the previously defined experiment protocol selection, its use
defines the manner and scope of the individual activities in
detail [6].
MACHINE LEARNING FOR HAR. Machine Learning for
sensor based human activity recognition has a long tradition.
Many published papers in the last two decades have proven
its feasibility [7], [8], [9] [10], [11], [12], [13], [14]. While
in the beginning most of the publications worked with clas-
sical Machine Learning approaches [8], [10], nowadays Deep
Learning has replaced classical Machine Learning as the state-
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of-the-art learning algorithm [15], [16], because deep learning
based classifiers often outperforms classical machine learning
approaches. Latest since [12], IMU sensor signals are used
as input to train neural networks. However, Deep Learning
models have the disadvantage that their success relies heavily
on large amounts of data to be able to converge [17], [18].
DATA AUGMENTATION FOR HAR. Data Augmentation is
one of the standard regularization techniques to prevent neural
networks from overfitting [19] and in recent years, it has
become an important focus in sensor based human activity
recognition research lately. The idea to use synthesized data
for training neural networks comes originally from computer
vision, e.g. [20], [21]. Traditional transformations of images,
e.g. scale, zoom, crop or add noise to the data were adapted
and transferred to time-series data by [22]. By applying these
techniques, the original data gets slightly modified. In reverse,
this also means that we never generate new and unique
data. Another approach introduced by Ian Goodfellow [23]
to augment data is to use a Generative Adversarial Networks
(GAN), like e.g. [24], [1]. Especially [1] is important for our
work, since we used this architecture as a baseline architecture,
on which our system is built on. The GAN published by
Esteban et al. [1] consists of two neural networks. A generator
model is used to augment data while a discriminator tries
to distinguish between real and augmented data. These two
models are training each other. As soon as the discriminator
is no longer able to detect anymore that the produced samples
are synthesized, it is assumed that real appearing time-series
data is generated. An advantage of this architecture is that we
generate new and therefore unique data, thus increasing not
only the number but also the variability.

III. EXPERIMENT

The PAMAP2 dataset consists of 19 activities of daily living
and was recorded by 9 subjects. The sampling rate of the
dataset is 100Hz and the sensitivity ±16g, the sensors are
placed on the chest, right ankle, and right wrist [25]. For our
experiment we decided to use the protocol subset, since these
data were recorded according to a fixed protocol sequence
and therefore can be interpreted more uniformly. Furthermore,
we limited the subset to the wrist sensor and to activities
that are recorded by each subject equally. We decided to
not take the null class into account, following the author’s
recommendation. Under these conditions, the data is reduced
to a subset that contains 8 subjects performing 6 different
activities of daily living. Activities that are taken into account
are: lying, sitting, standing, walking, vacuum cleaning and
ironing.

Our developed approach is depicted as a process cycle
and is easy to follow up, see fig. 3. This figure a total of
3 different variations of the dataset that are used or created
during the augmentation process. One is the initial dataset,
as earlier described. The same data, but organized as LOSO-
folds is further referred as α-dataset, which consists of all
selected subjects and activities. The α-subset is used to obtain
the groundtruth, also called baseline, and serves as the input

for synthesizing new data. Since the used protocol-subset of
PAMAP2 contains data from 8 different subjects, our α-subset
contains 8 folds, where in each of the subsets one subject is
excluded and used as the test data. After the augmented data
is merged into the α-dataset, the set is referred as β-dataset.

A. Network Architectures

DEEPCONVLSTM
A DeepConvLSTM architecture is used, see Ordoñez et al.
[13], to train four different models. The first model is trained
with all subjects and all activities used in this experiment.
This network monitors the quality of the generated samples
by predicting the samples classes. Another model is trained by
using the LOSO cross-validation with the α-subset to obtain
the baseline for the final evaluation. A third and fourth model
is trained with the β-subset, which contains the LOSO-folds
(α-subset) as well as the synthesized data. However, the β-
subset differs depending on the chosen augmentation strategy.
GENERATIVE ADVERSARIAL NETWORK (GAN)
The architecture of this work is based on the network intro-
duced as Recurrent GAN [1] and follows an architecture in
which both, generator and discriminator, are LSTM-Networks
instead of multi-layer perceptrons. The generator network
takes random noise at the start of the training. The length
of the noise-vector corresponds to the number of timesteps
of the LSTM-cell. The discriminator network is used as a
binary classifier, which takes the output from the generator
as synthetic time series and real data at each LSTM timestep.

Training of the discriminator as a binary classifier minimizes
the average negative cross-entropy between the prediction and
real labels for both synthetic and real examples. Considering
CE as the average cross-entropy between sequences Xn and
yn, where Xn (Xn ∈ RT∗d) is the matrix that comprises the
output sequence T from the LSTM cells in the discriminator
and yn, where yn can be a vector, 1 or 0; the discriminator
loss is given by,

Dloss (Xn, yn) = −CrossEntropy(LSTMD(Xn), yn)
(1)

This loss is used by the generator to mislead the discriminator
network by producing real-like data that minimize the average
negative cross-entropy between the discriminators output on
synthetic data and the actual label, considering Zn as a
sequence of samples from noise space z;

Gloss (Zn) = Dloss(LSTMG(Zn), 1)

= −CrossEntropy(LSTMD(LSTMG(Zn)), 1)
(2)

The generator consists of LSTM cells with 100 units as hidden
layers and a linear activation function, instead of the tanh-
function used by [1]. The discriminator uses the sigmoid-
function as the output activation function. Both, generator
and discriminator are simultaneously trained at each epoch.
Considering the data generating distribution as px from the
generative distribution as pg; After an arbitrary number of
timesteps, both of the networks will hold an equilibrium
condition and cannot be further improved than pg=pdata.
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Fig. 1. GAN architecture. Both networks, Generator and Discriminator
(orange boxes), consists of 100 hidden LSTM cells. Random noise from noise
space is fed as input to the Generator. The trained Generator synthesizes
samples as an output. Using cross-entropy loss, both networks are optimized
at each time-step. The network will take the original sample windows from
α-subset as an input and generate samples (β-subset) as output of the network.

B. Methodology

In our experiment, we first trained a model of the DeepCon-
vLSTM with the complete protocol-subset of PAMAP2. This
network is trained for 200 epochs and achieved a validation
F1 score of 96%. This means that this network knows the
characteristics of all subjects and all used activities, therefore
it is able to distinguish between real and fake data, and can
be used as a model to select just appropriate data generated
from the GAN. Important training parameters for the GAN
network are: learning-rate = 0.10, Batch-size = 20, latent-
dimension (or noise space for generator input) = 10, number
of time the generator and discriminator network optimized at
each epoch = 5. Due to the unknown number of exactly needed
training epoch of the generator and discriminator, in which the
GAN starts to produce real looking synthetic data, the network
needs to be trained for many epochs. Training the GAN for
approximately 1000 epochs is an appropriate estimate to start
the process. As soon as fitting hyperparameters and epoch
are found, we are able to synthesize an arbitrary number of
samples.

Since we are tuning between two networks (generator and
discriminator), the discriminator often shows lower loss-values
than the generator. Although the generator mislead the discrim-
inator, the produced data does not look realistic. Therefore the
synthesized data from the generator is fed for a quality-check
to the DeepConvLSTM. If the F1-Score achieves ≥ 95%, the
data is considered to have reached the supposed quality and
the data will be saved or otherwise discarded. If the required
amount of data is reached, the process will be terminated.

Two different strategies, (1) Subject- & Activity-Wise Aug-
mentation and (2) Folder- & Activity-Wise Augmentation, are
developed, see fig. 2. Both strategies follow the process-cycle
as shown in fig. 3, but differ in the input data of the GAN.

Fig. 2. Data Augmentation Strategies: Grey background represents the initial
dataset, green the augmented data and blue the data after merging both (β-
dataset). Yellow squares represents the test-subject for each fold. (1) Subject-
& Activity-Wise augmentation and merging strategy. After augmenting the
data, the augmented data is merged back into the subjects data, afterwards
the LOSO-Folds will be created; (2) Fold-Wise augmentation and merging
strategy. LOSO-Folds are created before the augmentation process starts.
The fold-wise arranged data is then used as input for the augmentation.
The synthesized data results in non-subject-specific data, it rather contains
characteristics from all subjects of the fold.

Therefore the augmented data show deviant characteristics.
(1) SUBJECT- & ACTIVITY-WISE AUGMENTATION
This strategy uses only the personal activity of a subject as
input. The data generated in this way is thus subject-specific.
The synthesized data is then added to the subject in the original
dataset. Afterwards, the different folds for the cross-validation
are generated.
(2) FOLD- & ACTIVITY-WISE AUGMENTATION
The fold-wise activity selection uses the activity-data of all
subjects from a fold as input for the augmentation. The
resulting data can no longer be assigned to a specific subject.
Rather, it contains characteristics of each subject in the fold.
Thus, the data is not assigned to the subjects, but is merged
into the folds directly. In contrast, the test dataset is not
enlarged as in strategy (1), instead the test subjects of the
α-dataset are used.

Once the subjects and activities to be augmented have been
selected, the preprocessing is applied. It is important to note
that the data generated by the GAN will be of the same
nature as the input data. This means that if raw data has to
be generated, the preprocessing must not include operations
that alter the raw data itself. Our goal is to produce raw
data that appears genuine. Therefore, during preprocessing,
we only remove missing values from the dataset and do not
apply normalization, even though normalization leads to better
classification results.

Afterwards, a jumping window algorithm is applied on both
subsets with a window length of 100 samples (1 second in
time-domain) and without overlapping samples. The windows
are labeled according to the method proposed by [13], where
the assigned label of the window is identical to the last sample
of the window. These labels are one-hot encoded with 0.0 or
1.0. After merging synthesized and original data. Our final
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Fig. 3. Data Augmentation Process Cycle: The complete dataset is needed to train the model that monitors the quality of the augmented data. The α-subset
represents the input data, the β-subset the dataset after merging the augmented data with the α-subset. For every activity, subject- or fold-wise organized data,
a new GAN needs to be trained. After 5 epochs the generated data is tested, if it reaches the predefined F1-Score of 95% it will be kept. If not, the data will
be discarded.

subset is called β-subset.
The data augmentation process itself is divided into 2

phases: (1) Generator phase and (2) Discriminator phase.
Figure 3 illustrates the complete augmentation process. A sep-
arate GAN must be trained for each activity. If the generated
samples cannot be distinguished from real samples anymore,
they will be saved, otherwise they will be discarded. Generator
and Discriminator networks train parallel on the real data.
This process is repeated till the discriminator unit decides that
the data looks real. Therefore we talk about this as a cycle
with n iteration steps. However, due to improper parameter
tuning of the generator and discriminator, it can happen that
the generator mislead the discriminator, which results in unreal
looking samples.

We synthesized 80000 samples per class using this method,
which is approx. 5 times more than the original dataset. Table
I sums up the process depicted in Figure 3 in a compact format
and can be used as a progress guide to implement a data
augmentation algorithm for sensor based human activity data.

IV. RESULTS

We trained our classification network with both augmenta-
tion strategies and compared the results to the baseline, the
results are summed up in Table II and visualized as confusion
matrices in Figure 4. As shown in the table, we are able to
increase the F1-Score by about 5.1% using strategy 2. The
subject-specific augmented data, strategy (1), increases the
F1-Score by 11.0%. Furthermore, the cross-validation shows
that the characteristics of the data of subject 0 and 7 do not
seem to match those of the other study participants, emerging
in lower classification results. They were only conditionally
increased for the classes lying, standing, vacuum cleaning and
walking (only strategy 2). The confusion, visible in Figure
4, belongs mostly to these subjects and shows that subject-
specific confusion is not solvable by just increasing the number
of samples, since even though the amount of samples were in-
creased by factor 5, and the confusion remained. The baseline
results of our experiment does not reach results presented in
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TABLE II
PRECISION (P), RECALL (R) AND F1-SCORE (F1) AS RESULTED FROM THE DIFFERENT AUGMENTATION STRATEGIES FOR EVERY ACTIVITY CLASS, AS

WELL AS THE CALCULATED WEIGHTED AVERAGE. THE BASELINE WITHOUT DATA AUGMENTATION REACHED AN F1-SCORE OF 67.5%. BOTH
AUGMENTATION METHODS IMPROVED THE CLASSIFICATION RESULTS. SUBJECT SPECIFIC AUGMENTATION METHOD IMPROVES THE TOTAL F1-SCORE TO

78.5% . THE FOLD-WISE AUGMENTATION PUSHES THE F1-SCORE TO 72.6%.
Fold 0 1 2 3 4 5 6 7

Metrics P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
Total avg
F1-Score: 67.5 Baseline without Data Augmentation

lying 76 36 49 100 92 96 100 91 95 94 72 81 83 93 88 78 94 86 100 95 97 02 00 01
sitting 00 00 00 99 59 74 90 98 94 95 95 95 91 76 83 99 83 90 99 91 95 68 52 59

standing 00 00 00 20 11 14 97 54 70 79 80 80 50 38 43 84 36 50 88 92 90 19 02 03
ironing 31 100 48 54 95 69 84 71 77 94 93 94 78 89 83 80 89 84 89 97 93 41 49 45
vacuum
cleaning 60 79 68 48 83 61 53 89 67 51 64 56 47 60 53 64 89 74 79 73 75 21 80 33

walking 82 84 83 99 50 67 95 93 94 86 88 87 83 72 77 93 95 94 96 97 96 44 01 03
weighted

avg 42 50 41 70 64 63 87 83 84 84 83 83 73 73 73 83 81 80 92 92 92 33 30 24

Total avg
F1-Score: 78.6 Subject- & Activity-Wise Augmentation

lying 96 95 95 100 98 99 99 98 99 99 92 95 96 97 97 95 99 97 99 100 100 01 00 01
sitting 00 00 00 99 96 97 95 100 97 98 97 98 98 93 96 100 97 98 99 99 99 85 40 54

standing 69 06 11 94 91 93 95 90 92 93 98 95 81 52 63 94 52 67 94 99 96 08 00 00
ironing 29 100 45 98 98 98 96 85 90 98 97 98 88 97 92 98 96 97 97 98 98 33 46 38
vacuum
cleaning 78 89 83 84 95 89 86 96 91 89 92 90 53 89 67 67 91 77 95 90 93 28 88 42

walking 55 16 25 99 94 96 95 97 96 97 96 96 91 60 72 88 98 93 98 97 97 86 61 71
weighted

avg 55 51 44 96 95 95 94 94 94 96 95 95 85 81 81 90 89 88 97 97 97 40 39 35

Total avg
F1-Score: 72,6 Fold- & Activity-Wise Augmentation

lying 81 70 75 100 92 96 98 92 95 98 86 92 98 92 95 83 94 89 95 98 97 02 00 01
sitting 00 00 00 90 59 72 87 100 93 94 95 95 93 72 81 80 94 86 97 92 95 59 51 54

standing 08 00 01 74 95 83 92 67 77 85 91 88 48 42 45 83 46 59 80 97 88 43 02 05
ironing 33 100 49 93 91 92 83 57 68 97 92 94 81 87 84 94 82 88 89 97 93 35 38 37
vacuum
cleaning 76 73 74 59 79 67 56 86 68 65 75 70 67 60 63 63 86 73 92 48 63 23 79 35

walking 89 86 88 97 83 90 92 93 93 91 89 90 68 91 78 92 94 93 90 97 93 84 37 52
weighted

avg 49 56 49 87 84 84 85 83 83 89 88 89 76 76 75 84 83 82 90 89 88 42 35 31

TABLE I
PROCESS GUIDE TO AUGMENT DATA EXEMPLARY ON PAMAP2.

Step Action Result Pitfalls

(1) Subject and
Activity
Selection

(1) Select Subjects
(2) Select Activities protocol subset

Select Activities or
Subjects with insuffi-
ciant number of
samples.

(2) Preprocessing

(1) Delete missing values
(Optional) Normalization
(2) Create Windows
(3) One-Hot-Encoding of
labels
(4) Create LOSO-Subsets

α–subset
(Preprocessed)

If the data is norma-
lized, be sure that the
same normalization
method is applied on
all subsets. We re-
commend to skip norm-
alization and work with
raw data.

(3a) Train
Monitoring-Network

Use protocol subset to
train the test-network

trained model
to test the quality
of the augmented
data

Over- or underfitting of
the Network. If an over-
or underfitting of your
network already happens
with the complete data-
set, it will also happen
with the reduced β-
subsets.
Hint: Quality-
check with cross-
validation on the
baseline model, to see
if the model is over-
or underfitted.

(3b) Train
baseline

Calculate the baseline
by training a
DeepConvLSTM with the
α-subset

LOSO-Baseline

(3c) Train
GANs

(1) Select subjects and
activities, for which
data should be gen-
erated.
(2) Decide for an
augmentation strategy
(3) Train the GAN-
Networks and generate
augmented data using
α-subset

Augmented windo-
ows of samples.

The Generator does
not produce realistic
samples at initial
steps although
discriminator loss is
quite low.
Introducing a new
activity, results in
fine-tuning the
parameters at first

(4) Merge Data (1) Merge α-subset
with augmented data β-subset

(5) LOSO cross-
validation

(1) Train/Test Model with
β-subset and
LOSO-Cross-Validation

Final classification
results

Not choosing the
correct metrics with
respect to the dataset
attributes.

other papers, for instance [26], [27] that worked with similar
architectures and datasets. This is due to the fact that we have
limited ourselves to the wrist sensor, as well as the smaller

protocol subset and have refrained from preprocessing.

V. CONCLUSION AND DISCUSSION

This paper introduces a new approach to augment sensor
based human activity data. The generative part of our archi-
tecture works with a Generative Adversarial Network (GAN),
which builds on the work of Esteban et al. [1] and is further
developed for using inertial data. Our method synthesises data
that mimics the input data characteristics. By following two
strategies, we are either able to augment subject- or fold-
specific activity data. The GAN is able to produce raw data, as
well as preprocessed appearing signals. We argue that with the
generated data we are able to increase scope and variability of
a dataset, which helps to increase classification performance
of a neural network and to prevent negative effects, such as
over- or underfitting. This work has also shown that adding
augmented data could have negative effects on certain classes
and subjects. This approach is applicable on an arbitrary
number of activities and subjects and can be transferred
to other sensor based human activity datasets. Through the
presented process cycle, we offer an easy to follow methods
that help other scientists to adopt, reproduce and integrate
such a method into their own experiments. The architecture
of the test network can be exchanged at will and thus be
adapted to individual needs. However, the further development
of GAN-architecture is necessary to be able to overcome the
time consuming disadvantage of choosing the correct hyper
parameters. To avoid this factor in the future, we plan to extend
the architecture with an independently acting search algorithm
to find satisfying hyperparameters for the GAN. In further
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Fig. 4. Confusion Matrices of the average classification results from the loso-cross-validation. From left to right: without augmented data, with Activity- &
Subject-Wise augmented data, with Fold- &Activity-Wise augmented data.

experiments, it is important to consider how much the size of
the augmented dataset influences the classification capabilities
of a model. Due to space constraints, those effects were not
explored in detail, but they are an important factor for real-
world application of such strategies and algorithms.
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