
sensors

Article

fastSW: Efficient Piecewise Linear Approximation of
Quaternion-Based Orientation Sensor Signals for Motion
Capturing with Wearable IMUs

Florian Grützmacher 1,* , Jochen Kempfle 2, Kristof Van Laerhoven 2 and Christian Haubelt 1

����������
�������

Citation: Grützmacher, F.; Kempfle,

J.; Van Laerhoven, K.; Haubelt, C.

fastSW: Efficient Piecewise Linear

Approximation of Quaternion-Based

Orientation Sensor Signals for Motion

Capturing with Wearable IMUs.

Sensors 2021, 21, 5180. https://

doi.org/10.3390/s21155180

Academic Editor: Thurmon Lockhart

Received: 9 July 2021

Accepted: 27 July 2021

Published: 30 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Applied Microelectronics and Computer Engineering, University of Rostock,
18051 Rostock, Germany; christian.haubelt@uni-rostock.de

2 Department of Electrical Engineering and Computer Science, University of Siegen, 57076 Siegen, Germany;
jochen.kempfle@uni-siegen.de (J.K.); kvl@eti.uni-siegen.de (K.V.L.)

* Correspondence: florian.gruetzmacher@uni-rostock.de; Tel.: +49-381-498-7289

Abstract: In the past decade, inertial measurement sensors have found their way into many wearable
devices where they are used in a broad range of applications, including fitness tracking, step counting,
navigation, activity recognition, or motion capturing. One of their key features that is widely used
in motion capturing applications is their capability of estimating the orientation of the device and,
thus, the orientation of the limb it is attached to. However, tracking a human’s motion at reasonable
sampling rates comes with the drawback that a substantial amount of data needs to be transmitted
between devices or to an end point where all device data is fused into the overall body pose. The
communication typically happens wirelessly, which severely drains battery capacity and limits the
use time. In this paper, we introduce fastSW, a novel piecewise linear approximation technique
that efficiently reduces the amount of data required to be transmitted between devices. It takes
advantage of the fact that, during motion, not all limbs are being moved at the same time or at
the same speed, and only those devices need to transmit data that actually are being moved or
that exceed a certain approximation error threshold. Our technique is efficient in computation time
and memory utilization on embedded platforms, with a maximum of 210 instructions on an ARM
Cortex-M4 microcontroller. Furthermore, in contrast to similar techniques, our algorithm does not
affect the device orientation estimates to deviate from a unit quaternion. In our experiments on
a publicly available dataset, our technique is able to compress the data to 10% of its original size,
while achieving an average angular deviation of approximately 2° and a maximum angular deviation
below 9°.

Keywords: piecewise linear approximation; segmentation; motion capturing; IMU; wearable sensors;
orientation; quaternion

1. Introduction

Motion capturing is the process of estimating a human’s posture and movements
over time using a computer controlled sensor system. Capturing can happen on the full
body or only on specific parts, such as the fingers, the face, the upper or lower body limbs,
or just a single arm. It not only has become an integral part of computer animation in
entertainment businesses but is also of growing interest in many other fields, such as
medical applications, such as gait analysis, in sports, in activity recognition, or, more
recently, in virtual and augmented reality. Depending on the task, limb or joint positions,
linear or angular velocity, acceleration, or orientation within a certain reference frame, as
well as a combination thereof, can be of interest. In general, motion capturing (or MoCap)
systems can be divided into optical systems and systems based on inertial sensors, but
less common MoCap systems based on mechanical, magnetic, or stretch sensors also exist,
with each of the various methods themselves coming with a myriad of different techniques.

Sensors 2021, 21, 5180. https://doi.org/10.3390/s21155180 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0370-222X
https://orcid.org/0000-0001-5296-5347
https://orcid.org/0000-0002-1568-5423
https://doi.org/10.3390/s21155180
https://doi.org/10.3390/s21155180
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21155180
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21155180?type=check_update&version=1

Sensors 2021, 21, 5180 2 of 19

After a short introduction of optical and inertial systems, along with a brief discussion of
the advantages and disadvantages of both, we will focus on inertial MoCap systems. More
specifically, we will focus on orientation signals measured by inertial MoCap systems and
propose a technique to overcome a certain limitation of these.

Traditional motion capturing techniques are based on optical systems that track the
position of fiducial markers, each carefully placed on the torso and limbs of the person to
be tracked, from different viewing angles, by using an arrangement of multiple cameras.
While these optical systems are the most accurate, they also tend to be expensive, require a
meticulous setup of the cameras, along with a calibration procedure, are susceptible to oc-
clusion, and constrain the motion to be captured to a certain working volume that typically
needs to be indoor. Within the last decade, motion can also be captured from a single depth
camera [1], or more recently, using deep learning approaches, even from a single RGB
camera, e.g., as in [2,3]. An alternative to optical systems are motion capturing systems
based on inertial measurement units (IMUs). State-of-the-art IMUs are able to calculate
their orientation in space by fusing sensor signals from their accelerometer, gyroscope,
and magnetometer. By equipping a person’s limbs and movable body parts with these
devices, the person’s posture and movement can be reconstructed. An example is depicted
in Figure 1. In general, IMU-based motion capturing systems are less accurate than optical
ones, but they are relatively cheap, occlusion-free, and not limited to a certain working
volume or an indoor environment. Early work in the research field of wearable computing
has investigated dense networks of inertial sensors for interaction [4] and making com-
puters aware of their context [5]. More recent works [6] show that with only 6 IMUs a full
body pose can be reconstructed, avoiding the need of wearing and setting up a separate
IMU for every limb. There also exist techniques to identify the limb an IMU is attached to
by comparing its orientation estimates to those coming from an optical motion capturing
system, allowing the combined system to benefit from the complementary advantages of
both [7]. To avoid complex and distracting wiring, IMU-based motion capturing systems
often consist of several stand-alone sensor units with wireless communication capacities
that only need to be attached at the correct body positions. Beyond a lower accuracy
and limited position tracking capabilities, their main drawback in this case is a limited
battery capacity.

Figure 1. Motion capturing animation from limb-mounted IMU sensors. Horizonal (left),
Vertical (right).

A convenient way to increase the system lifetime, while keeping a reasonable sampling
rate of about 50 Hz or higher, is to reduce the amount of data to be transmitted. While
the position, velocity, and acceleration of an IMU can unambiguously and efficiently be
expressed as a vector in cartesian coordinates, for orientation estimates, there exist various
alternatives, such as Euler or Tait-Bryan angles, rotation matrices, axis-angle representation
using Rodrigues’ rotation formula, or unit quaternions. In most cases, they are expressed
as unit quaternions, which, in contrast to Euler or Tait-Bryan angles, do not suffer from
gimbal lock, are more compact than a rotation matrix, and are mathematically more elegant

Sensors 2021, 21, 5180 3 of 19

than axis-angle representations. Still, since sensor sampling and communication has to be
performed at appropriate rates in order to provide for high resolution motion trajectories,
a substantial amount of data needs to be transmitted. At the same time, high sampling and
communication rates of wireless low-power networks, e.g., Bluetooth Low Energy (BLE),
nevertheless impose a drastic increase in total device energy consumption [8,9]. Since
human motion is rarely continuously performed at high rates of change, a considerable
amount of energy is consumed by transmitting sensor samples with little to no additional
information, if, e.g., the human is standing still. As a consequence, this paper investigates
a possible data reduction and, thus, energy saving approach for wearable orientation
sensors by using Piecewise Linear Approximation (PLA) techniques. Piecewise linear
approximation is a technique that approximates time series signals with linear segments
that are guaranteed to be bound by a user-defined upper segment error. In the context
of sensor signals in general, PLA techniques have successfully been applied to extract
and represent the characteristic signal information recorded by Inertial Measurement
Units for the purpose of activity and gesture recognition. Prominent solutions include
recognition techniques by dense motif discovery, as introduced in [10], or continuous string
and sequence matching algorithms, as introduced in [11,12], respectively.

While PLA techniques, as mentioned above, have successfully been applied to one-
dimensional or multi-dimensional data, such as acceleration or angular velocity, to date,
and to the best of our knowledge, they have not been applied to orientation data or to
quaternion-based signals in particular in the literature. Hence, as a major contribution,
the paper at hand investigates the application of PLA algorithms to orientation sensor
signals, in order to reduce the amount of data and, thus, energy consumption of wearable
sensor nodes in motion capturing scenarios with IMU sensors. We will show that addi-
tional requirements for a possible PLA are necessary when dealing with unit quaternions,
such as producing segment points that are a subset of the original sensor samples. The
rationale behind this will be explained in Section 4 in more detail. Furthermore, a suc-
cessful interpolation of linear segments on the receiver side necessitates a piecewise linear
approximation of connected segments. As a result, PLA techniques that produce connected
linear segments are of importance.

While fast and scalable PLA algorithms exist that can be implemented on wireless
sensor nodes or even directly on their sensor sub-systems, these do not adhere to the
aforementioned requirements. In turn, other existing PLA algorithms that do adhere
to these requirements do not provide for an efficient processing of the sensor signals.
This gap in the state-of-the-art is evaluated by the paper at hand, and a new online PLA
algorithm combining efficient and scalable performance with the ability to approximate
quaternion-based orientation sensor signals is proposed and evaluated.

The main contributions of this paper can be summarized as follows:

• A comparison and summary of state-of-the-art PLA methods with emphasis on
efficient approximation of quaternion-based orientation sensor signals.

• An evaluation and discussion of the key requirements for applying PLA algorithms
to orientation data expressed as unit quaternions.

• A novel PLA algorithm that is scalable, efficient in execution time and memory
utilization, and that is suitable to approximate orientation data in the form of unit
quaternions.

The remainder of the paper is structured as follows. In the following section, re-
lated work is reviewed and discussed in the context of piecewise linear approximation
of orientation sensor signals. In Section 3, orientation sensor signals and their common
representation by quaternions, as well as their implied requirements on possible PLA
techniques, are discussed. Existing PLA techniques will be applied to a selected motion
capturing dataset, and their limitations will be evaluated in that section, as well. Section 5
introduces our novel PLA technique, referred to as fastSW, which combines time and
memory efficient processing capabilities, as well as required segment point selection, for a
successful approximation of quaterion-based orientation sensor signals for motion captur-

Sensors 2021, 21, 5180 4 of 19

ing applications. In Section 6, fastSW is experimentally evaluated and formally analyzed
w.r.t. its approximation quality and its execution time on resource constrained architectures
in comparison to existing PLA methods. Finally, the acquired results are summed up, and
conclusions are drawn, in Section 7.

2. Related Work

In past decades, several piecewise linear approximation algorithms, sometimes re-
ferred to as segmentation algorithms, have been introduced in the literature. Especially in
sensor-based applications, PLA is often used to reduce the amount of data that has to be
stored, transmitted, or further processed, without loosing general trajectory information. A
reduction in data size can lead to a reduced energy consumption, e.g., of wireless sensor
nodes [8,13]. In order to reduce the total device energy consumption, the reduction due
to decreased data size for transmission or storage has to outweigh the increase of energy
consumption due to added workload computing the PLA itself [9].

In [14], Keogh et al. introduced the Sliding Window and Bottom Up (SWAB) algorithm,
combining the online feature of Sliding Window (SW) and the buffer-based knowledge of
future sensor samples from Bottom Up (BU), both well known PLA techniques themselves.
Improvements to SWAB have been introduced in [12] (mSWAB) and [15] (emSWAB).
However, emSWAB has an average execution time that is magnitudes higher than other
PLA algorithms, e.g., SW, which is further scaling with the anticipated segment length.
Even SW itself has an O(n) computational and memory complexity of adding a new
sample to the PLA w.r.t. the segment length. In [16], a new PLA algorithm, i.e., Connected
Piecewise Linear Regression (CPLR), has been introduced, that can be executed in O(1) time
for processing a new sensor sample and O(1) memory consumption, making it suitable
to be executed on architectures with harsh memory and timing constraints. Another PLA
algorithm that can be executed in O(1) time per processed sample and O(1) memory
consumption is the Swing Filter (SF), introduced by Elmeleegy et al. in [17]. Both PLA
algorithms, CPLR and Swing Filter, make use of the same updating technique for the
determination of the best fitting slope of PLA segments; however, the Swing Filter finally
alters this choice by an additional restriction by introducing a maximum deviation of
single samples as termination condition of a segment. The CPLR algorithm instead, further
exploits the updating mechanism and calculates the Sum of Squared Residuals (SSR) error
of the segment in O(1) time for each new sample, for which a user defined threshold value
provides the termination condition of segments. As a result, both algorithms differ in their
error metric. Although within a maximum segment error bound, CPLR and Swing Filter
extrapolate segment points from a regression line. As a result, segment points generally do
not represent, except by chance, samples of the original signal.

Other PLA algorithms that can be found in the literature include PLAMLiS, intro-
duced by Liu et al. in [18], and its optimization, introduced by Pham et al. in [19]. The
computational complexity of processing a single sensor sample, which is decisive for an
online approximation of the signals on resource constrained architectures, is not detailed in
both works. Their computational complexities of approximating an entire series of m sensor
samples is given with O(m2 log m) and O(m2), respectively. As a consequence, the process-
ing of a single sensor sample is not constant but depends on the length of a buffer, which
further constraints their compression abilities and, therefore, possible energy savings.

Lemire introduced a fast PLA algorithm in [20], which, on the other hand, comes at a
significant increase in memory consumption. Since an effective energy saving necessitates
a computation on a wireless sensor node microcontroller or even on the sensor sub-system
itself, the harshly constrained availability of memory prevents a successful application in
this domain.

Sensors 2021, 21, 5180 5 of 19

In [21], a segmentation framework based on polynomial least-squares approximation
has been introduced by Fuchs et al., referred to as SwiftSeg. Their framework includes
first order polynomials, i.e., linear segments, which can produce PLA signals, as well. The
first order variant is closely related to the regression principle of CPLR, with the difference
that it resembles a linear regression with an intercept term, which produces disconnected
segments. CPLR instead, is based on linear regression without an intercept term, which
allows it to produce connected segments.

In [22], Luo et al. introduced a PLA algorithm with constant update time, but which is
buffer-based. While the processing of a single sample is constant, the memory complexity is
linear in the segment length, as their algorithm incorporates a buffer. As a buffer introduces
a limit on the segment length, the data compression ability is constrained, and potential
energy savings cannot fully be utilized. Furthermore, the introduced PLA algorithm by
Lui et al. produces a mixture of connected and disconnected segments.

In the paper at hand, existing PLA algorithms are compared w.r.t. their ability of
approximating quaternion-based orientation sensor signals for energy efficient motion
capturing applications online on resource constrained architectures, which can be found
on wireless sensor nodes and their equipped sensor sub-systems. Furthermore, a novel
PLA algorithm is proposed, i.e., fastSW, that unifies the advantages of state-of-the-art
PLA methods, w.r.t. approximation quality, choice of segment points, execution time, and
memory consumption.

A comparison of state-of-the-art PLA algorithms from the literature, including fastSW,
is summarized in Table 1. The first column specifies the PLA methods and its origins,
followed by the second column (OL), which denotes the online feature. This is necessary
for an application in motion capturing scenarios with wearable sensors, approximating the
sensor data on the microcontroller of the wearable or its sensor sub-system itself, online
at run time. The third column (CS) denotes if the PLA algorithm produces connected
segments, which is necessary for a seamless interpolation of the approximated signals at
the receiver side. The fourth column denotes the preservation of sensor samples (POS),
i.e., if the PLA segment points are a subset of the original sensor samples. This is a crucial
point for quaternion-based signals, which will be thoroughly explained in the next section.
The fifth column (BB) lists, whether the PLA algorithms are buffer-based. This constrains in
most cases the segment length and, thus, the compression ratio that can be achieved. The
segment or sample error metric (EM) listed in the sixth column, specifies the metric that
is used for the user-specified error bound of the approximation. The seventh and eighth
column list the time and memory complexities of processing a single sensor sample w.r.t.
the lengths of a segment n, respectively. These are crucial to be small, i.e., ideally O(1), in
order to provide for an online application without constraining the compression ratio due
to limited computational resources. Correspondingly, the ninth and tenth column, specify
the time and memory complexity of processing an entire sequence of samples, w.r.t. the
length of that sequence m. Here, the buffer size, if applicable, is assumed to be of length m,
as well, as this allows for maximum compression ratio.

Sensors 2021, 21, 5180 6 of 19

Table 1. Comparison of state-of-the-art PLA algorithms, with OL denoting online applicability, CS the ability to produce
connected segments, POS the preservation of original samples, BB the necessity of a buffer, EM the error metric, TCn the
time complexity for processing a single sample w.r.t. the segment length n, MCn the memory complexity for processing a
single sample w.r.t. segment length n, TCm the time complexity for processing an entire sequence w.r.t. to its length m,
MCm the memory complexity for processing an entire sequence w.r.t. to its length m, SSR the sum of squared residuals
error of a segment, SAD the sum of absolute deviations of a segment, and ε denoting an absolute residual error per sample.

Algorithm OL CS POS BB EM TCn MCn TCm 1 MCm 1

BU [14] 2 no yes yes yes SSR O(n2) O(n) O(m2) O(m)
SWAB [14] yes yes yes yes SSR O(n2) O(n) O(m2) O(m)
mSWAB [12] yes yes yes yes SSR O(n2) O(n) O(m2) O(m)
emSWAB [15] yes yes yes yes SAD O(n2) O(n) O(m2) O(m)
PLAMLiS [18] n/a yes yes yes ε n/a O(n) O(m2 log m) O(m)
PLAMLiS++ 3 [19] n/a yes yes yes ε n/a O(n) O(m2) O(m)
SW [14] 2 yes yes yes yes SSR O(n) O(n) O(m2) O(m)
By Luo et al. [22] yes mixed no yes ε O(1) O(n) O(m) O(m)
By Lemire [20] (yes) 4 n/a no yes SSR O(1) 5 O(n) O(m) O(m)
SwiftSeg [21] yes no no (yes) 6 SSR, ε, . . . O(1) O(1) O(m) O(1)
CPLR [16] yes yes no no SSR O(1) O(1) O(m) O(1)
SF [17] yes yes no no ε O(1) O(1) O(m) O(1)
fastSW (our contribution) yes yes yes no SSR O(1) O(1) O(m) O(1)

1 In order to provide worst-case bounds, the buffer lengths or the maximum segment lengths are assumed to be as large as the dataset itself,
respectively. This also provides for the highest achievable compression ratio.
2 The original source does not get obvious from the literature.
3 No name has been given to the algorithm, but it is an extension of PLAMLiS.
4 Although not explicitly stated in [20], the PLA algorithm of Lemire could be used for online processing extending its range sums for each
new sample and calculating the slope fit and segment error with it.
5 Although the actual calculation of line fit and error happens in an O(1) step, it is based on a precalculated array of range sums for each
sample of the sequence.
6 In general, SwiftSeg is based on a buffer. However, for the first order variant with segmentation and slope information, a buffer might not
be necessary, or at least does not constrain the segment lengths.

3. Quaternion-Based Orientation Sensor Signals

In many fields of computer science, orientations are often represented as unit quater-
nions. Unit quaternions do have several benefits over other mathematical representations
of orientation or rotation. In contrast to Euler angles, they do not suffer from gimbal locks,
and they are more compact in memory space as compared to rotation matrices. Moreover,
they can be processed more efficiently than rotation matrices. Chaining two rotations,
i.e., multiplying two rotation matrices requires 45 operations (27 multiplications and 18 ad-
ditions/subtractions), while, for unit quaternions, only 28 operations (16 multiplications
and 12 additions/subtractions) are required. Furthermore, due to accumulating rounding
errors after several processing steps, for instance, in forward or inverse kinematics, the
resulting quaternion or matrix may not represent a valid orientation anymore. A quater-
nion can easily be converted back to a valid orientation representation by normalizing it,
while converting a matrix back to a proper orthogonal rotation matrix is much harder to
achieve. Another desirable property of unit quaternions is that they provide with spherical
linear interpolation (SLERP) an easy way to smoothly transition or interpolate from one
orientation to another along their geodesic, i.e., the shortest arc between two points on
a hypersphere.

Typical applications where unit quaternions are used range from computer animation
and motion capturing over robotics up to space craft and airplane or satellite navigation. A
promising application for piecewise linear approximation of quaternion signals hereby is
the field of computer graphics. While man-made animations typically consist of a couple of
keyframes that are interpolated (often using animation curves) to achieve a fluid animation,
motion capturing (MoCap) data consists of an array of individual orientation samples of all
joints captured at the given sampling rate. A motion capturing file, thus, consumes much

Sensors 2021, 21, 5180 7 of 19

more memory than an animation file, while not necessarily providing more detailed motion
features. For instance, not all limbs are moving at the same time, and a limb movement
may also sufficiently be expressed as a (spherically) linear movement between various
limb angles. Being able to reduce the size of a MoCap file to only contain the necessary
keyframes that mark a change in a limb movement and to completely remove all static
joints, thus, has the potential to significantly reduce the memory requirements of such a
file. For IMU-based MoCap systems, the data reduction, furthermore, may directly happen
on the sensing devices and can reduce both the required data traffic and, thus, the device
power consumption. This also extends to telemedicine and rehabilitation scenarios, e.g.,
gait evaluation [23,24], that is based on capturing the movement of limbs via wearable
IMU sensors. In the next section, state-of-the-art PLA algorithms and their limitations for
quaternion-based orientation sensor signals will be discussed.

4. Piecewise Linear Approximation of Quaternion-Based Orientation Sensor Signals

In order to evaluate the approximation quality of existing PLA algorithms w.r.t.
quaternion-based orientation sensor signals, the public TNT15 dataset [25] works as a
case study for the paper at hand (see Section 6).

Since approximating sensor data is prone to information loss, one of the quality
indicators of an approximation technique is the approximation error. This error is adjustable
by a user defined threshold in terms of a maximum SSR error per segment (SW, CPLR,
SWAB, mSWAB) or a maximum absolute residual error per sample (SF). Another quality
indicator of PLA algorithms is the ratio to which sensor data can be compressed. A higher
compression leads to fewer segment points that have to be transmitted wirelessly or stored
in the flash memory of wearable sensor nodes. In the paper at hand, the inverse of the
compression ratio is used as the second quality indicator, which is the ratio between the
size of the resulting PLA signal S̃ and the original signal S. As a result, a small inverse
compression ratio (ICR) is desirable when approximating sensor signals, in order to reduce
the amount of data to be transmitted, thus saving energy of the wearable device. The ICR
is calculated by:

ICR =
m̃
m

, (1)

with m̃ denoting the length of the PLA signal S̃, and m denoting the length of the original
signal S. Although not linearly or monotonically dependent, the general trend is a higher
approximation error at lower ICRs. As an indicator of overall approximation quality, both,
approximation error and ICR, have to be traded-off.

While, in [16], the approximation error for several inertial sensor signals has been
evaluated as the sum of squared residuals error of the approximated dataset, the evaluation
in the paper at hand is focused on orientation sensors. As a result, the approximation error
can naturally be expressed in terms of an angle ∆(q0, q1) between two quaternions q0 and
q1, which correspond to the original sensor sample and its approximation. The angular
deviation of two quaternions q0 and q1 is calculated by:

∆(q0, q1) = 2 arccos |〈q0, q1〉| , (2)

with |〈q0, q1〉| denoting the absolute value of the dot product between q0 and q1 considered
as 4 component vectors. Hence, the approximation error is defined as the sum of absolute
angular deviations w.r.t. the shortest rotation between individual samples of the original
sensor signal and its PLA interpolated at the corresponding timestamps of the original
signal. Since the lengths of the evaluated dataset scales the sum of angle deviations, the
result is further normalized by the lengths of the original signal, hence resulting in an
Average Angular Deviation (AAD), which is calculated as follows:

AAD =
1
m

m−1

∑
i=0

∆(S[i], S̃′[i]) , (3)

Sensors 2021, 21, 5180 8 of 19

with S̃′ being the PLA signal S̃ interpolated at the corresponding timestamps of the original
signal S, m being the lengths of both signals, and ∆(x, y) being the angular deviation
between two quaternions. In the paper at hand, the interpolated PLA signal S̃′ is based on
SLERP, a standard method to interpolate between two unit quaternions. It has the benefit
of the fact that interpolation happens along the geodesic (or shortest arc) of the quaternion
hypersphere, and, at the same time, the angular velocity of the resulting rotation is retained.

In order to express a 3D orientation, a quaternion needs to be of length one; hence,
it needs to be a unit quaternion. Quaternions that do not have unit length need to be
normalized before further processing; otherwise, for instance, a vector being rotated by
a quaternion would also be scaled with the scale error being propagated by the square
of the quaternion norm. Furthermore, spherical linear interpolation would not yield
correct results when quaternions do not have unit length. While the orientation sensor
signals acquired from IMUs are composed of unit quaternions, the application of PLA
algorithms to these signals may produce segment points that deviate from unit quaternions.
This is generally the case with PLA algorithms based on linear regression, which do not
preserve original signal values in their resulting PLA (cf. column POS in Table 1) but
extrapolate segment points from regression lines. Examples of linear regression-based PLA
algorithms are CPLR and SF. The extrapolation of segment points from a regression line
scales the signal unequally among its axes, which results in an unwanted rotation when
normalizing the quaternion. This results in a higher angular deviation of segment points
compared to their original signal values at higher compression ratios when approximated
with regression-based PLA algorithms, such as CPLR and SF.

The differences in segment point construction between regression-based PLA algo-
rithms (e.g., CPLR and SF), and PLA algorithms that produce segment points that are a
subset of the original sensor data (e.g., SW), is demonstrated in Figure 2. The plot in the
top row shows the original orientation data obtained from the left shank of the fast-paced
running on spot activity of user MR from the TNT15 dataset. The following plots below
(from top to bottom) depict the corresponding PLAs produced by CPLR, SF, SW, and our
proposed method (fastSW) at a similar inverse compression ratio of approximately 5%.
For the sake of comparison, PLAs are depicted as point markers overlaid over the original
sensor data represented by dashed lines. The segment points of CPLR and SF do not lie
on the original data, except by chance. When approximated by SW (or fastSW), segment
points are guaranteed to lie on the original data, since SW selects a subset of the original
signal values as its segmentation points. This will be explained in more detail in Section 5.

Due to the fact that SW preserves original sensor samples in its resulting PLA and,
thus, retains unity of produced segment points, it can be considered as an appropriate PLA
algorithm for orientation sensor signals represented by quaternions. Nevertheless, although
being one of the most efficient state-of-the-art PLA algorithms in terms of execution
time and memory consumption (cf. columns TCn, MCn, TCm, and MCm in Table 1)
that preserve original signal values within the PLA (cf. column POS in Table 1), the
major drawback of SW is its linear execution time and memory complexity per sensor
sample w.r.t. the lengths of the produced segments and, thus, its effective compression
ratio. This increases the processor utilization for higher compression ratios, which might
outweigh the data rate reduction in terms of energy consumption, depending on the
deployed architecture.

In the paper at hand, we introduce a new PLA algorithm which is based on SW but
exploits the SSR updating technique from CPLR, which ultimately leads to mathematically
equal PLA results to those acquired by SW, but with a O(1) computational and memory
complexity for processing a new sample, such as CPLR and SF. This novel PLA algorithm
is referred to as fastSW and is introduced in the following section.

Sensors 2021, 21, 5180 9 of 19

0 2 4 6 8 10
1.0
0.5
0.0
0.5
1.0

Original Data

w x y z

0 2 4 6 8 10
1.0
0.5
0.0
0.5
1.0

PLA with CPLR, ICR=0.05

0 2 4 6 8 10
1.0
0.5
0.0
0.5
1.0

PLA with SF, ICR=0.05

0 2 4 6 8 10
1.0
0.5
0.0
0.5
1.0

PLA with SW, ICR=0.05

0 2 4 6 8 10
1.0
0.5
0.0
0.5
1.0

PLA with fastSW, ICR=0.05

Time [s]

Figure 2. Example of the different PLA method outputs at a compression ratio of approximately 5% the size of the original
data. Shown is the quaternion data from the left shank of the fast-paced running on spot activity of user MR from the TNT15
dataset, with the original data at the top, and the produced segment points overlaid over the original data by the algorithms
(from top to bottom): CPLR, SF, SW, and fastSW (our proposed method). CPLR and SF produce segment points that are not
a subset of the original data, while SW and fastSW produce segment points that lie on the original data.

5. Efficient Piecewise Linear Approximation with fastSW

The general procedure of our proposed algorithm is based on the original SW algo-
rithm: for each new (n-th) sensor sample, a linear function (temporary segment) β · t is
created based on the current sensor sample sn and the last segmentation point s̃i−1, with
t denoting the length in time of the temporary segment, i.e., t = τ(sn) − τ(s̃i−1), with τ
denoting the timestamp part of a sample or segmentation point, respectively. To this end,
the slope vector entry βd for each dimension d = 1, . . . , D of the D-dimensional segment is
calculated by:

βd =
υ(sn, d)− υ(s̃i−1, d)

t
, (4)

Sensors 2021, 21, 5180 10 of 19

with υ(s, d) denoting the amplitude value of a sample s in dimension d. Note that n is the
index of the newest sample within the currently developing segment, which is reset to one
with each newly created segment point.

The SSR error is calculated between the temporary segment with slope vector β, and
the original signal samples between s̃i−1 and sn. The segment SSR up to the n-th sample of
the current segment (s̃i−1, sn) is mathematically defined by:

SSRn =
n

∑
j=1

D

∑
d=1

(
ydj − βd · tj

)2
, (5)

with ydj representing the amplitude of the j-th sensor sample of dimension d within the seg-
ment coordinate system, i.e., ydj = υ(sj, d)− υ(s̃i−1, d), and tj representing the timestamp
of the j-th sensor sample within the segment coordinate system, i.e., tj = τ(sj)− τ(s̃i−1).

The original SW algorithm buffers all original samples spanning the temporary seg-
ment, i.e., s1, . . . , sn, and iterates over these in order to calculate the segment SSR error
by Equation (5). This iteration causes a linear Worst-Case Execution Time (WCET) for
processing a single new sensor sample w.r.t. the temporary segment lengths.

Similar to CPLR [16], fastSW calculates the SSR error of the temporary segment based
on updated values, in constant time. To this end, binomial expansion is applied to the
accumulated term in Equation (5), and the two commutative sums are swapped, which
results in:

SSRn =
D

∑
d=1

(
n

∑
j=1

(
y2

dj

)
− 2βd

n

∑
j=1

(
tj · ydj

)
+ β2

d

n

∑
j=1

(
t2

j

))
. (6)

Each sum over all n samples of a segment can now be updated with each new sample in
a constant time. Furthermore, the accumulation over the signal dimensions is independent
of the segments length. However, depending on the size of the segment and the amplitude
range of the sensor signal, the updated sums can span a rather large range of values,
which can cause numerical issues in fixed or floating-point implementations. As a solution,
corresponding mean values are stored and updated instead, which substitute the sums in
Equation (6), together with a multiplication with n, that is:

y2
dn · n =

n

∑
j=1

(
y2

dj

)
, (7)

tydn · n =
n

∑
j=1

(
tj · ydj

)
, and (8)

t2n · n =
n

∑
j=1

t2
j . (9)

The means y2
dn, tydn, and t2n, are updated by the timestamp tn and signal amplitude

ydn of the new sensor sample sn within the coordinate system of the currently developing
segment (originating in s̃i−1), by:

y2
dn = y2

dn−1 +
y2

dn−1 − y2
dn

n
, (10)

tydn = tydn−1 +
tydn−1 − tn · ydn

n
, and (11)

t2n = t2
n−1 +

t2
n−1 − t2

n
n

. (12)

By assuming a constant dimensionality of the signals to be approximated (which is
the case with state-of-the-art inertial and orientation sensor data), the segment error SSRn

Sensors 2021, 21, 5180 11 of 19

up to the n-th sample can then be re-calculated from the updated means for each newly
included sensor sample sn in a constant number of steps, by:

SSRn =
D

∑
d=1

(y2
dn − 2βdtydn + β2

dt2n) · n . (13)

Note that the calculation of SSRn differs from CPLR (Equation (22) in [16]), as β2
d

cannot be resolved here since, for fastSW, βd is not representing the slope of a regression
line of the original samples but the slope from the last segment point and the current
sample, as shown in Equation (4).

With the aforementioned equations, the fastSW algorithm can now be introduced, the
execution time of which is independent of the temporary segment length. The pseudo-code
of fastSW is given in Algorithm 1.

Algorithm 1 fastSW.

1: procedure PROCESS_SAMPLE(sample s, segment array S̃[], index i)
2: n = n + 1
3: SSRn = 0
4: tn = timestamp(s)− timestamp(S̃[i− 1])
5: for d in (1, . . . , D) do
6: yn[d] = value(s, d)− value(S̃[i− 1], d)
7: β[d] = yn[d]/tn[d]
8: SSRn = SSRn + (y2

n−1[d]− 2β[d] · tyn−1[d] + β[d]2 · t2
n−1) · (n− 1)

9: if SSRn <= TH then
10: t2

n−1 = t2
n−1 + ((tn · tn)− t2

n−1)/n
11: for d in (1, . . . , D) do
12: tyn−1[d] = tyn−1[d] + ((tn · yn[d])− tyn−1[d])/n
13: y2

n−1[d] = y2
n−1[d] + ((yn[d] · yn[d])− y2

n−1[d])/n

14: sn−1 = s
15: return 0
16: S̃[i] = sn−1
17: sn−1 = s
18: n = 1
19: tn = timestamp(s)− timestamp(S̃[i])
20: t2

n−1 = tn · tn
21: for d in (1, . . . , D) do
22: yn[d] = value(s, d)− value(S̃[i], d)
23: tyn−1[d] = tn · yn[d]
24: y2

n−1[d] = yn[d] · yn[d]

25: return 1

The very first sensor sample needs to be stored in S̃[1] as the initial segment point. For
each following sensor sample sj, function PROCESS_SAMPLE is executed with sj as the first
parameter, the segment array S̃[], which needs to be at least of size two, and the index i, at
which the next segment point will be stored within S̃[].

The variables n, TH, and D, as well as the vectors tyn−1[] and y2
n−1[], both of size D,

and the previous sensor sample sn−1 need to be stored globally. All other variables are
temporary. The variables TH and D for the threshold and dimensionality of the sensor
signal, respectively, need to be set at initialization. Variable n and vectors tyn−1[] and
y2

n−1[] are initialized with zero.
At the beginning of Algorithm 1 in line 2, the current segment length n is incremented

due to the new sensor sample, which is temporarily assumed to be covered by the currently
developing segment. In line 3, the segment error is reset to zero. The timestamp tn of s

Sensors 2021, 21, 5180 12 of 19

within the coordinate system of the current segment is calculated in line 4, based on the last
segment point S̃[i− 1] and s. Note that function timestamp(s) returns the timestamp part
of a sensor sample or a segment point s, respectively. The amplitudes of s in the coordinate
system of the current segment are calculated for each of the signal dimensions (line 5) and
stored in the vector yn[], in line 6. Note that function value(s, d) returns the amplitude in
dimension d of a sensor sample or a segment point s, respectively. The slope of the current
segment is calculated for each signal dimension and stored in vector β[] in line 7, and the
SSR of each signal dimension between the current segment and the original sensor data
covered by that segment is calculated and accumulated into the total segment error SSRn,
in line 8.

If the SSR error of the current segment is smaller than or equal to the user-defined
threshold TH (line 9), the new sample s is manifested within the current segment, by
updating the running variable t2

n−1 and the vectors of running variables y2
n−1[] and

tyn−1[] in lines 10, 12, and 13, respectively. The new sample is stored in sn−1 in line 14,
in case a new segment needs to be created from there, in the next invocation. Finally, the
function returns with zero in line 15, indicating, that no new segment has been created.

In case SSRn is greater greater than TH (line 9), the sensor sample added in the
previous function invocation, i.e., sn−1, will be set as new segment point at position i in
array S̃[], in line 16. Since the new sensor sample sn is already the first sample to be covered
by the newly started segment and also its current end point, it is stored in sn−1 for the next
function invocation, in line 17, and the number of samples n is reset to one in line 18. The
timestamp of s within the coordinate system of the newly started segment is calculated in
line 19, with which the running variable tn−1 is re-initialized for the newly started segment
in line 20.

Similarly, the amplitudes of s in the coordinate system of the newly started segment are
calculated for each dimension in line 22, with which also the vectors of running variables
y2

n−1[] and tyn−1[] are re-initialized in lines 23 and 24, respectively. The function returns
with 1 in line 25, indicating that a new segment point has been created. The new segment
point is stored in S̃[i]. After function PROCESS_SAMPLE returns, the new segment point
should either be moved to position i− 1 in S̃[], in case the latter is of size two, or i should
be incremented with the next invocation of PROCESS_SAMPLE due to a new sensor sample,
in case S̃[] is supposed to store the entire or a batch of created segment points. Ultimately,
management of segment points is dependent on the anticipated application and should be
decided by the system designer.

Similar to other state-of-the-art segmentation algorithms, the time and memory
complexity of fastSW is linear w.r.t. the dimensionality of the signal (lines 5 and 11
in Algorithm 1). The dimensionality, however, can commonly be assumed to be constant.
More importantly, the time and memory complexity of fastSW w.r.t. the segment length and,
thus, the compression ratio is constant. SW, in contrast to fastSW, shows a linear time and
memory complexity w.r.t. the segment lengths. Both will be shown in the following section.

6. Experimental Evaluation

In order to assess the performance of our proposed method, we selected the methods
CPLR, SF, and SW to be compared against fastSW. All methods have in common that they
provide PLAs with connected segments and can be considered the most efficient state-of-
the-art PLA algorithms in terms of computational and memory complexity (cf. columns
CS, TCn, and MCn in Table 1).

For the application on quaternions, all PLA algorithms have been implemented to
process 4D sensor data. Furthermore, the maximum segment length is set to 1000 samples.
Although CPLR, SF, and fastSW do not require a limited segment length (cf. line 9 in
Algorithm 1), it is implemented to ensure comparable results to SW. As a consequence, the
minimum achievable ICR in our experiments is limited to 0.001, or 0.1%.

Each PLA algorithm can be controlled by a user-specified threshold value on its
internal error metric, but the threshold merely constitutes a control parameter, rather than a

Sensors 2021, 21, 5180 13 of 19

quality indicator. Due to the differences in their concept, different algorithms may produce
PLAs with different approximation errors and compression ratios at the same threshold,
while they may reach the same compression ratio and approximation error at different
thresholds. Hence, PLA results cannot be compared based on equal threshold values, but
approximation errors have to be compared at similar compression ratios, which will be
considered in our evaluation on real data.

The experimental evaluation further is divided into three parts. In a first experiment,
the computational complexities of the selected PLA algorithms on a real world example are
investigated. Then, a WCET analysis on a representative architecture (ARM Cortex-M4) is
performed, and, in a third and final experiment, the approximation quality of all methods
is assessed and compared.

The first and third experiment are evaluated on the publicly available TNT15
dataset [25]. It comprises 7 activities performed by 4 different actors, summing up to
a total of 28 different recordings. The activities include walking, running on the spot,
rotating arms, jumping and skiing exercises, dynamic punching, and two activities that are
not further specified in the dataset documentation. Each recording, furthermore, was per-
formed with 10 IMUs placed at the shanks, thighs, lower arms, upper arms, neck, and hip,
with the sensors providing acceleration and orientation data at a sampling rate of 50 Hz.
Overall, the dataset comprises 4040 to 10,180 samples per file, from which the acceleration
data is discarded, and only the orientation data in the form of unit quaternions is used.
This ensures avoiding distortion in our evaluation results by artifacts from additionally
processing acceleration data, for which existing PLA techniques already have proven to
work well.

Since it is not guaranteed to reach exactly equal compression ratios with different
PLA algorithms on a particular dataset, multiple PLAs need to be produced with varying
threshold values for each evaluated algorithm. To this end, each of the 28 recorded files in
the dataset has been approximated at 205 different threshold values, starting at zero and
logarithmically increasing evenly among 9 magnitudes, ranging from 0.000001 to 1000, in
order to acquire an appropriate coverage of ICRs for CPLR, SF, SW, and fastSW, respectively.
This applies to both, the first and the third experiment. Details on the experimental design
and the acquired results from the three experiments are presented in the following sections.

6.1. Execution Time Measurements on an x86_64 Processor

In order to observe the execution time dependency on the segment length in a real
world example, we have measured the execution times of the selected PLA algorithms
for processing each single sensor sample in the TNT15 dataset. Since, for computational
complexity, the absolute timing is not relevant, but the growth in execution time w.r.t. a
certain parameter (in this case the average segment length), these measurements have been
performed on a standard x86_64 computer architecture. This setup, furthermore, simplifies
automated processing of all files within the dataset.

The execution of each invocation for a new sensor sample has been measured by
taking timestamps before and after the corresponding function to process a single sensor
sample. The implementation is based on the clock_gettime syscall of the Linux kernel in
version 5.12.9 with CLOCK_MONOTONIC_RAW as clock source and a resolution of 1 ns. The
experiments have been performed on an Intel Core i7-5600U CPU, and the algorithms have
been compiled with the GNU Compiler Collection (GCC) C compiler in version 11.1.0 [26].

In Figure 3, the average execution time across the entire TNT15 dataset of each
algorithm is depicted in relation to the average segment length for each evaluated threshold
value. A higher average segment length denotes a higher compression and, thus, a smaller
PLA data size. Despite outliers caused by architectural influences (most importantly, cache
misses per se, which are further influenced by other scheduled processes), the constant
time complexity of CPLR, SF, and fastSW can be seen, as well as the linear execution time
growth of SW w.r.t. the segment length. Furthermore, it can be seen that fastSW has the

Sensors 2021, 21, 5180 14 of 19

smallest execution time among the PLA algorithms with constant time complexity and
outperforms SW at an compression ratio of approximately 2 and upwards, as well.

0 50 100 150 200 250 300101

102

103

104
CPLR SF fastSW SW

Average Segment Length

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

[n
s]

Figure 3. Average execution time per sample plotted against the resulting average segment length of each PLA algorithm
applied to the entire TNT15 dataset at a high range of threshold values on an x86_64 architecture. For the sake of comparison,
the execution time is plotted in a logarithmic scale. CPLR, SF, and fastSW show a constant execution time, while SW shows
a linear average execution time, with respect to the average segment length.

From this first experiment, the linear execution time growth of SW w.r.t. the compression
rate is evident. However, the actual timing results do not reflect expected timing behavior on
the target hardware architectures of the anticipated use case, i.e., wireless sensor nodes. As a
result, a second evaluation has been designed for evaluating the timing of all algorithms on
a representative hardware architecture, i.e., an ARM Cortex-M4 microcontroller.

6.2. Worst-Case Execution Time Analysis on an ARM Cortex-M4 Instruction Set Architecture

While the measured execution times on the x86_64 architecture give enough infor-
mation to assess the computational complexity, their absolute timing is not representative
for wearable devices. As a result, the second part of the evaluation is based on a WCET
analysis on the ARM Cortex-M4 architecture. Instead of the actual timing, the instruction
count for each algorithm is measured. The rationale behind this is three-fold. Firstly,
the ARM Cortex-M4 is a representative microcontroller architecture for wearable devices.
Secondly, a WCET analysis is not limited to a particular dataset in which the worst case
(in terms of execution time) might not be contained. In the particular case, this would
include situations in which the sensor is not moved and the produced PLA segments would
grow particularly long. While this constitutes a situation in which data can be compressed
effectively, algorithms, such as SW, where the execution time is linear dependent on the
segment length, would suffer from an increased processor utilization, eventually being
limited by the available computational resources. Finally, since instruction set architectures
(ISAs), such as the ARM Cortex-M4, can be implemented with different clock frequen-
cies that eventually dictate final execution times, analyses based on instruction counts
provide a common base for comparisons of algorithms independent of the architectural
implementation of the microcontroller and can, furthermore, be translated to such.

Since the WCET analysis is based on compiled source code for the M4 architecture,
each algorithm has been compiled with the Arm Embedded GCC version 11.1.0 of the GNU
Arm Embedded Toolchain [26] with the Cortex-M4 chosen as target platform (command
line option -mcpu=cortex-m4). Floating-point instructions have been set with Floating-

Sensors 2021, 21, 5180 15 of 19

Point Unit (FPU) specific calling conventions (command line option -mfloat-abi=hard),
and the optimization level has been set to highest w.r.t. to execution time (command line
option -O3). The compiled assembler codes (command line option -S) have been subjected
to automated generation of Control Flow Graphs (CFGs) with corresponding instruction
counts (ICs) of the basic blocks. The CFGs, due to their simplicity, have been analyzed
manually w.r.t. minimal and maximal execution time, as well as their execution time
dependency w.r.t. loop counter variables, i.e., segment lengths. The results are summarized
in Table 2.

Table 2. Instruction counts (IC) of 4D implementations of CPLR, SF, fastSW, and SW on an ARM
Cortex-M4 microcontroller, with n denoting the length of the current segment.

Algorithm min. IC max. IC

CPLR 198 209
SF 252 420

fastSW 191 210
SW 53 161 + n · 35

As can be seen in Table 2, the maximal ICs of CPLR, SF, and fastSW are indepen-
dent of the segment length and, thus, of the compression ratio. Furthermore, CPLR and
fastSW show a maximum IC that is approximately half of that of SF. The maximum IC of
SW is 161 instructions in general and, for each sample in the buffer (segment length n),
35 additional instructions. As an example, for a segment length of 100, SW would execute
3661 instructions for processing a new sample in the Cortex-M4 architecture, while fastSW
processes each sensor sample with a maximum of 210 instructions, independent of the
segment length. This shows the superiority of the segment error updating mechanism of
fastSW compared to SW, while achieving quasi-equal results. The term quasi-equal is used,
as there might occur small differences in the segment error calculation due to the numerical
precision of floating point operations which are mathematical identical but computed in
a different order. As a result, for SW, the segment error threshold might be reached for
one sample while fastSW reaches it on the next sample, or vice versa. However, these
differences do not significantly influence the approximation quality. The resulting approxi-
mations represent operating points which can be reached by both algorithms, due to their
constraint of producing segment points that are a subset from the original sensor signal.

6.3. Approximation Quality

In this section, the approximation quality of CPLR, SF, SW, and fastSW on the TNT15
dataset is assessed. The dataset has been approximated with the selected PLA algorithms
as explained in the beginning of this section, in order to compare resulting approximation
errors at similar compression ratios.

The resulting curves from relating approximation errors and compression ratios
are compared to each other. By plotting these curves over the ICR, the approximation
quality can be assessed by the distance of the resulting curves from the origin on the
plot. That is, the nearer the curve to the origin of the coordinate system, the better the
approximation quality.

Since the approximation quality not only depends on the particular PLA algorithm
itself but also on the time-dependent characteristics of the data, we assessed the long term
average, standard deviation, and maximum of the approximation error over the entire
TNT15 dataset in order to quantify the approximation quality and its variation.

Figure 4 (left) depicts the angular deviations (or approximation errors) of the approxi-
mations of the entire TNT15 dataset after interpolating the produced segment points from
CPLR, SF, SW, and fastSW at the corresponding timestamps of the original data using
SLERP. All methods exhibit a similar or, in the case of SW and fastSW, nearly the same
approximation quality, which means that differences of the methods are not obvious from

Sensors 2021, 21, 5180 16 of 19

the reconstructed signal. A completely different picture is drawn on Figure 4 (right), where
only the angular deviations of the segment points themselves to the corresponding data
points from the original signal are measured. Here, the differences of the methods are
significant. CPLR and SF exhibit increasing angular deviations of their segment points
with decreasing inverse compression ratio, while SW and fastSW show constant angular
deviations at a small scale over the whole range of inverse compression ratios. As expected,
and despite numerical differences in regions with a small number of segments (low inverse
compression ratio) and numerical precision of the angular deviation per se, both SW and
fastSW produce segment points that do not deviate from their original sensor samples.
However, PLAs from linear regression-based algorithms, such as CPLR and SF produce
extrapolated segment points which deviate from unit quaternions as the compression
increases (lower ICRs) and, thus, introduce higher angular deviations between produced
segment points and the corresponding original orientation quaternions. In Figure 4 (right),
the average angular deviations of segment points produced by CPLR and SF reach up to
more than 40° at an ICR of 0.01. In contrast, angular deviations of segment points produced
by SW and fastSW are independent of the compression, with their maximum angular
deviation staying below 0.1° and their average angular deviation staying below 0.001°.

10 2 10 1 100
10 3

10 2

10 1

100

101

10 2 10 1 100
10 3

10 2

10 1

100

101

CPLR
CPLR std
CPLR max

SF
SF std
SF max

fastSW
fastSW std
fastSW max

SW
SW std
SW max

Inverse Compression Ratio

An
gu

la
r D

ev
ia

tio
n

Figure 4. Left: Average (solid line), standard deviation (shaded area), and maximum (dashed line) of angular deviations of
the approximations of the entire TNT15 dataset with CPLR, SF, SW, and fastSW from the original signal after interpolating the
produced segment points using spherical linear interpolation (SLERP). Right: Average, standard deviation, and maximum
of angular deviations of only the segments points of the same approximations. Values are plotted against the resulting
inverse compression ratio (ICR) at a high range of different threshold values. Colors of the shaded regions denoting the
standard deviations mix up and may extend over the whole plot at smaller ICRs due to the logarithmic scale of the y-axis.
While differences of the methods on the reconstructed signal (left plot) are not obvious, the differences of the segment
points themselves (right plot) are significant. CPLR and SF show increasing angular deviations of their segment points with
decreasing ICR. The segment points of SW and fastSW, on the other hand, are not affected by the ICR and show constant
angular deviations at a small scale caused by numerical precision.

For the sake of demonstration, the reconstruction results of the running on spot activity
of user MR from the TNT15 dataset at six different frames and five different compression
ratios are depicted in Figure 5 for CPLR, SF, SW, and fastSW. The frames have been

Sensors 2021, 21, 5180 17 of 19

interpolated from the segment points using SLERP. Although the focus of the paper at hand
is not particularly on animation or motion reconstruction but rather on motion capturing
with orientation sensors, the reconstructed animations in Figure 5 provide a good visual
feedback on the trade-off between approximation error and compression ratio.

CPLR SF SW / fastSW

100%

50%

25%

10%

5%

Figure 5. Reconstruction results of the fast-paced running on spot activity of user MR from the TNT15 dataset. Left: CPLR,
Middle: SF, Right: SW/fastSW. Single frames (from left to right) are taken at six different time points every 100 ms. Colors
indicate file size w.r.t. the original size and are arranged from top to bottom, with: The original file (light blue), 50% (light
green), 25% (yellow), 10% (orange), and 5% (dark orange) of the original file size. Ground truth frames (light blue) are
overlaid over all frames to highlight deviations. At 50% and 25%, a good approximation is obtained from all methods.
Higher compression ratios yield less accurate reconstructions.

For animation, a clear benefit of SW and fastSW over other state-of-the-art PLA algo-
rithms cannot be stated, as interpolation between segment points introduces approximation
errors that have a higher impact with increasing compression ratio than the segment points.
However, in scenarios when orientation sensor data needs to be reduced but accurate sup-
porting points are necessary, e.g., a combination of video and IMU-based motion capturing,
SW and fastSW can deliver accurate segment points that do not have to be normalized and,
therefore, prevent additional rotation errors. This also translates to other applications.

While SW could offer these properties already, but at a linear computational and
memory complexity w.r.t. compression ratio which diminishes possible energy savings due
to increased processing, fastSW offers an efficient alternative with a constant computational
and memory complexity. Furthermore, since fastSW does not need to buffer sensor data, the
segment length and, thus, compression ratio is theoretically not limited, without increasing
memory consumption.

7. Summary and Conclusions

In the paper at hand, we studied the applicability of state-of-the-art PLA algorithms
in motion capturing scenarios where limb orientations are acquired by quaternion-based
orientation sensors from wearable devices. Our analysis revealed a gap in the state-of-
the-art: There is no computationally efficient PLA algorithm that provides PLA segments

Sensors 2021, 21, 5180 18 of 19

that are a subset of the original sensor data. For general IMU applications, deviation
from the original data is not a crucial issue. However, unit quaternions are susceptible to
that, as demonstrated in our experiments. They are not only required to be normalized
again, but even slight deviations from the original data on different axes can also cause
significant angular deviations as shown in Section 6.3. We further introduced our novel
PLA algorithm fastSW, that is based on the original sliding window algorithm but lends its
time and memory efficient updating technique of the segment error from CPLR, allowing it
to be performed with a time and memory complexity of O(1) w.r.t. the compression ratio.
Hence, fastSW allows for an efficient and effective reduction in data transmissions and,
thus, energy consumption, without introducing additional angular deviations to segment
points when approximating quaternion-based orientation sensor signals.

Author Contributions: Conceptualization of fastSW, F.G.; analysis w.r.t. quaternion-based orienta-
tion sensor signals, F.G. and J.K.; dataset preparation, J.K.; experimental evaluation, F.G. and J.K.;
software, F.G.; formal and experimental analysis of execution time, F.G.; visualization, J.K.; writing,
F.G., J.K., K.V.L. and C.H.; supervision, K.V.L. and C.H. All authors have read and agreed to the
published version of the manuscript.

Funding: We acknowledge financial support by Deutsche Forschungsgemeinschaft and Universität
Rostock/Universitätsmedizin Rostock within the funding programme Open Access Publishing.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Our implementations can be obtained by mailing the first or the
last author.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AAD Average Angular Deviation
BLE Bluetooth Low Energy
BU Bottom Up
CFG Control Flow Graph
CPLR Connected Piecewise Linear Regression
FPU Floating Point Unit
IC Instruction Count
ICR Inverse Compression Ratio
ISA Instruction Set Architecture
IMU Inertial Measurement Unit
MoCap Motion Capturing
PLA Piecewise Linear Approximation
SF Swing Filter
SLERP Spherical Linear Interpolation
SSR Sum of Squared Residuals
SW Sliding Window
SWAB Sliding Window and Bottom Up
WCET Worst-Case Execution Time

References
1. Shotton, J.; Fitzgibbon, A.; Cook, M.; Sharp, T.; Finocchio, M.; Moore, R.; Kipman, A.; Blake, A. Real-time human pose recognition

in parts from single depth images. In Proceedings of the 24th IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; pp. 1297–1304

2. Mehta, D.; Sotnychenko, O.; Mueller, F.; Xu, W.; Elgharib, M.; Fua, P.; Seidel, H.P.; Rhodin, H.; Pons-Moll, G.; Theobalt, C. XNect:
Real-time multi-person 3D motion capture with a single RGB camera. ACM Trans. Graph. (TOG) 2020, 39, 82: 1–82: 17 [CrossRef]

3. Cao, Z.; Hidalgo, G.; Simon, T.; Wei, S.E.; Sheikh, Y. OpenPose: Realtime multi-person 2D pose estimation using Part Affinity
Fields. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 172–186. [CrossRef] [PubMed]

http://dx.doi.org/10.1145/3386569.3392410
http://dx.doi.org/10.1109/TPAMI.2019.2929257
http://www.ncbi.nlm.nih.gov/pubmed/31331883

Sensors 2021, 21, 5180 19 of 19

4. Perng, J.; Fisher, B.D.; Hollar, S.; Pister, K. Acceleration sensing glove (ASG). In Proceedings of the Digest of Papers, Third
International Symposium on Wearable Computers, San Francisco, CA, USA, 18–19 October 1999; pp. 178–180

5. Golding, A.R.; Lesh, N. Indoor Navigation Using a Diverse Set of Cheap, Wearable Sensors. In Proceedings of the Digest of
Papers, Third International Symposium on Wearable Computers, San Francisco, CA, USA, 18–19 October 1999; p. 29.

6. Huang, Y.; Kaufmann, M.; Aksan, E.; Black, M.J.; Hilliges, O.; Pons-Moll, G. Deep Inertial Poser Learning to Reconstruct Human
Pose from SparseInertial Measurements in Real Time. ACM Trans. Graph. 2018, 37, 185:1–185:15.

7. Kempfle, J.; Van Laerhoven, K. Quaterni-On: Calibration-free Matching of Wearable IMU Data to Joint Estimates of Ambient
Cameras. In Proceedings of the 2021 IEEE International Conference on Pervasive Computing and Communications Workshops
and other Affiliated Events (PerCom Workshops), Pisa, Italy, 21–25 March 2021; pp. 611–616.

8. Fafoutis, X.; Marchegiani, L.; Elsts, A.; Pope, J.; Piechocki, R.; Craddock, I. Extending the battery lifetime of wearable sensors
with embedded machine learning. In Proceedings of the 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore,
5–8 February 2018; pp. 269–274.

9. Grützmacher, F.; Hein, A.; Beichler, B.; Lepidis, P.; Dorsch, R.; Kirste, T.; Haubelt, C. Energy Efficient On-Sensor Processing for
Online Activity Recognition. In Proceedings of the 8th International Joint Conference on Pervasive and Embedded Computing
and Communication Systems, Porto, Portugal, 29–30 July 2018; pp. 223–230.

10. Berlin, E.; Van Laerhoven, K. Detecting leisure activities with dense motif discovery. In Proceedings of the 2012 ACM Conference
on Ubiquitous Computing, Pittsburgh, PA, USA, 5–8 September 2012; pp. 250–259.

11. Stiefmeier, T.; Roggen, D.; Tröster, G. Gestures are strings: Efficient online gesture spotting and classification using string
matching. In Proceedings of the ICST 2nd International Conference on Body Area Networks, Florence, Italy, 11–13 June 2007;
pp. 1–8.

12. Van Laerhoven, K.; Berlin, E.; Schiele, B. Enabling efficient time series analysis for wearable activity data. In Proceedings of the
2009 International Conference on Machine Learning and Applications, Miami, FL, USA, 13–15 December 2009; pp. 392–397.

13. Grützmacher, F.; Wolff, J.P.; Hein, A.; Lepidis, P.; Dorsch, R.; Kirste, T.; Haubelt, C. Towards energy efficient sensor nodes for
online activity recognition. In Proceedings of the IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics
Society, Beijing, China, 29 October–1 November 2017; pp. 8291–8296.

14. Keogh, E.; Chu, S.; Hart, D.; Pazzani, M. An online algorithm for segmenting time series. In Proceedings of the 2001 IEEE
International Conference on Data Mining, San Jose, CA, USA, 29 November–1 December 2001; pp. 289–296.

15. Berlin, E.; Van Laerhoven, K. An on-line piecewise linear approximation technique for wireless sensor networks. In Proceedings
of the IEEE Local Computer Network Conference, Denver, CO, USA, 10–14 October 2010; pp. 905–912.

16. Grützmacher, F.; Beichler, B.; Hein, A.; Kirste, T.; Haubelt, C. Time and memory efficient online piecewise linear approximation of
sensor signals. Sensors 2018, 18, 1672. [CrossRef] [PubMed]

17. Elmeleegy, H.; Elmagarmid, A.; Cecchet, E.; Aref, W.G.; Zwaenepoel, W. Online piece-wise linear approximation of numerical
streams with precision guarantees. In Proceedings of the International Conference on Very Large Data Bases; ACM: New York, NY,
USA, 2009.

18. Liu, C.; Wu, K.; Pei, J. An energy-efficient data collection framework for wireless sensor networks by exploiting spatiotemporal
correlation. IEEE Trans. Parallel Distrib. Syst. 2007, 18, 1010–1023. [CrossRef]

19. Pham, N.D.; Le, T.D.; Choo, H. Enhance exploring temporal correlation for data collection in WSNs. In Proceedings of the
2008 IEEE International Conference on Research, Innovation and Vision for the Future in Computing and Communication
Technologies, Ho Chi Minh City, Vietnam, 13–17 July 2008; pp. 204–208.

20. Lemire, D. A better alternative to piecewise linear time series segmentation. In Proceedings of the 2007 SIAM International
Conference on Data Mining; SIAM: Philadelphia, PA, USA, 2007; pp. 545–550.

21. Fuchs, E.; Gruber, T.; Nitschke, J.; Sick, B. Online segmentation of time series based on polynomial least-squares approximations.
IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 2232–2245. [CrossRef] [PubMed]

22. Luo, G.; Yi, K.; Cheng, S.W.; Li, Z.; Fan, W.; He, C.; Mu, Y. Piecewise linear approximation of streaming time series data with
max-error guarantees. In Proceedings of the 2015 IEEE 31st international conference on data engineering, Seoul, Korea, 13–17
April 2015; pp. 173–184.

23. Broscheid, K.C.; Stoutz, S.; Chien-Hsi, C.; Schega, L. The potential of a home-based gait evaluation system with a new low-cost
IMU: A pilot study. In Conference: HEALTH ACROSS LIFESPAN (HAL)-International Conference on Healthiness and Fitness across the
Lifespan; Otto von Guericke University Magdeburg: Magdeburg, Germany, 2018; pp. 12–15.

24. Potluri, S.; Chandran, A.B.; Diedrich, C.; Schega, L. Machine learning based human gait segmentation with wearable sensor
platform. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 588–594.

25. von Marcard, T.; Pons-Moll, G.; Rosenhahn, B. Human Pose Estimation from Video and IMUs. Trans. Pattern Anal. Mach. Intell.
2016, 38, 1533–1547. [CrossRef] [PubMed]

26. The Free Software Foundation. GCC, the GNU Compiler Collection. Available online: http://gcc.gnu.org (accessed on
8 July 2021).

http://dx.doi.org/10.3390/s18061672
http://www.ncbi.nlm.nih.gov/pubmed/29882849
http://dx.doi.org/10.1109/TPDS.2007.1046
http://dx.doi.org/10.1109/TPAMI.2010.44
http://www.ncbi.nlm.nih.gov/pubmed/20975120
http://dx.doi.org/10.1109/TPAMI.2016.2522398
http://www.ncbi.nlm.nih.gov/pubmed/26829774
http://gcc.gnu.org

	Introduction
	Related Work
	Quaternion-Based Orientation Sensor Signals
	Piecewise Linear Approximation of Quaternion-Based Orientation Sensor Signals
	Efficient Piecewise Linear Approximation with fastSW
	Experimental Evaluation
	Execution Time Measurements on an x86_64 Processor
	Worst-Case Execution Time Analysis on an ARM Cortex-M4 Instruction Set Architecture
	Approximation Quality

	Summary and Conclusions
	References

