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Abstract: Focal onset epileptic seizures are highly heterogeneous in their clinical manifestations, and
a robust seizure detection across patient cohorts has to date not been achieved. Here, we assess and
discuss the potential of supervised machine learning models for the detection of focal onset motor
seizures by means of a wrist-worn wearable device, both in a personalized context as well as across
patients. Wearable data were recorded in-hospital from patients with epilepsy at two epilepsy centers.
Accelerometry, electrodermal activity, and blood volume pulse data were processed and features for
each of the biosignal modalities were calculated. Following a leave-one-out approach, a gradient
tree boosting machine learning model was optimized and tested in an intra-subject and inter-subject
evaluation. In total, 20 seizures from 9 patients were included and we report sensitivities of 67% to
100% and false alarm rates of down to 0.85 per 24 h in the individualized assessment. Conversely, for
an inter-subject seizure detection methodology tested on an out-of-sample data set, an optimized
model could only achieve a sensitivity of 75% at a false alarm rate of 13.4 per 24 h. We demonstrate
that robustly detecting focal onset motor seizures with tonic or clonic movements from wearable data
may be possible for individuals, depending on specific seizure manifestations.

Keywords: wearables; epilepsy; seizure detection; multimodal; mHealth; eHealth; mobile health;
digital health

1. Introduction

With a worldwide incidence of up to 100 per 100,000 per year, epilepsy is one of the
most prevalent neurological disorders, affecting over 70 million people worldwide [1].
Epilepsy manifests in a multitude of different symptoms with varying severities generally
denoted as epileptic seizures [2], and the current gold standard in diagnosis and seizure
monitoring is in-hospital video-electroencephalography (vEEG). However, this diagnostic
tool, while being accurate and widely used for diagnosis and determination of treatment,
is only practicable in relatively short-term applications at a hospital or special epilepsy
monitoring unit [3]. At home or in their daily life, patients with epilepsy cannot feasibly be
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monitored in such a way and with the same benefit. Yet, seizure tracking in an ultra-long-
term context at home is needed, both as an automatic alarm to potentially alert carers in the
event of a seizure, and as a tool for monitoring and forecasting the disease trajectory [4,5].
Thus, different technologies and methodologies of seizure monitoring need to be employed,
and wearables such as smartwatches and fitness trackers in combination with machine
learning may fill this gap while being easily available for a wider audience.

Epileptic seizures are defined by a period of abnormal neuronal activity in the brain,
and are generally divided into two main groups by their neurological onset [2]. Seizures
with an early bilateral involvement are called generalized seizures, while seizures with
just a single point of onset are denoted as focal onset seizures, but epileptic activity can
propagate across the brain resulting in “focal to bilateral” seizures with characteristic motor
manifestations. Bilateral tonic–clonic seizures have been assessed in numerous studies
as to the viability of wearables for the detection during recent years, and detection has
been demonstrated to be feasible in multiple retrospective studies [6–14]. Conversely,
focal seizures in general are still a relatively unexplored field with respect to wearable
non-EEG detection [15–20]. Symptoms and manifestations of these seizures are much more
heterogeneous as compared to those of bilateral tonic–clonic seizures, with some barely or
not at all captured by typical wearable biosignal modalities, such as accelerometry (ACC),
electrodermal activity (EDA), or photoplethysmography (PPG).

Focal seizures can be roughly divided into two categories: those with motor and those
without motor manifestations. Non-motor symptoms, that is, those without involuntary
movement of the body, may include partial loss of awareness or consciousness, cognitive
impairment, or emotional or sensory symptoms. Motor symptoms, on the other hand, can
include tonic or clonic movements of the limbs or body in general, hyperkinetic movements,
or automatisms. A single epileptic seizure can thereby be composed of multiple types of
manifestations, in parallel or sequentially.

This work highlights difficulties in the detection of focal onset epileptic seizures, specif-
ically those with focal tonic or clonic motor symptoms but without bilateral propagation,
from biosignal data captured by wearable devices. A data set consisting of multimodal
data from a wrist-worn wearable was recorded from patients with epilepsy during their in-
hospital stay at an epilepsy monitoring unit (EMU). Classical supervised machine learning
is applied in order to assess the utility of this kind of data for the detection of seizures, in the
context of an automated seizure diary. As written diaries created by the patients themselves
have been demonstrated to be very inaccurate and often severely undercount seizures
even for convulsive seizures [21–23], an automated diary tool implementing an objective
seizure identification and quantification is needed, for example, as a basis for treatment
decisions made by epileptologists. In the supervised methodology employed here, data are
first labeled, based on parallel vEEG monitoring, as “seizure” or not “seizure”, and then
processed into meaningful features and given to the machine learning model for training.
Thus, the trained model can then be used to automatically classify new data. Specifically,
in this study we employ a gradient tree boosting machine as the seizure detection model.
To evaluate such an approach, and subsequently also determine the application in a real-
world system, two procedures can be applied: intra-subject or inter-subject evaluation. The
intra-subject evaluation focuses on the performance of the methodology when applied to
data from a single patient, while the inter-subject evaluation assesses the performance over
multiple patients with potentially different types of epilepsy and seizure manifestations.
The former requires multiple seizures recorded per subject and will produce individual-
ized models tailored to a single patient, while the latter requires seizures recorded from
multiple different participants and will give inter-subject models, to be used over wider
populations. Here, we aim to determine which of these approaches may work best for
focal motor seizures going forward, giving guidance for the design of future studies in the
field. Following the study classification suggested by Beniczky and Ryvlin in 2018 [24],
the work presented here could be classified as a phase 1 retrospective proof-of-principle
study. The main contribution of this work is the evaluation of supervised machine learn-
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ing methodologies on focal onset epileptic motor seizures in a data set recorded from a
non-EEG wearable device. A comparison between two evaluation approaches, intra- and
inter-subject, provides additional context and facilitates recommendations towards future
studies in the field.

2. Materials and Methods
2.1. Data Set

Data from wearable devices was recorded from a total of 243 patients with epilepsy
across two EMUs in the period between July 2017 and February 2020. Both at the neuro-
physiological department of King’s College Hospital, London (KCL, 71/243), and at the
Epilepsy Center, Medical Center—University of Freiburg (UKF, 172/243), patients in the
age range of 7 to 80 with a diagnosis of epilepsy were recruited sequentially as part of
their standard clinical epilepsy care, for example, in the course of standard presurgical
evaluation. Patients with predominantly (suspected) psychogenic non-epileptic seizures
or other involuntary movements were not included in the study. As part of their stay in
the EMU study, participants may have had seizures provoked, for example, by temporary
reduction of their anti-epileptic medication or through other means, such as sleep depri-
vation or hyperventilation techniques. The vEEG data was retrospectively reviewed and
labeled by clinical experts (E.B., N.E.). Primarily, they marked seizure type and semiologies,
electrographic and clinical onset and offset, and other meta-data including state of vigilance
and body position at seizure onset. While participants wore different kinds of wearable
devices, and sometimes more than one in parallel, the retrospective study presented here
only includes data from the wrist-worn Empatica E4 (Figure A1; Empatica Inc., Boston
MA, USA). It is a research-grade device designed specifically for epilepsy seizure detection
recording 3-axis ACC at a sample rate of 32 Hz, EDA at 4 Hz, skin temperature at 4 Hz, and
PPG at 64 Hz, the latter of which was internally pre-processed into a blood volume pulse
(BVP) signal. The wearable has a European CE class IIa certification as a medical device.
The data recording mode used in this study was the online Bluetooth streaming mode.
Battery life could range between 12 h to 48 h depending on the condition of the battery. Par-
ticipants were given two devices, such that one would always be recording while the other
was charging. The study and recording procedures are further described in Bruno et al.
2021 [25] and Ranjan et al. 2019 [26]. As part of the study recruitment, all participants gave
written informed consent, and the study protocols and consent forms were approved by
the local ethics committees (London Fulham Research Ethics Committee—16/LO/2209;
Ethics Committee at the University of Freiburg—538/16).

2.2. Feature Set

To facilitate the detection of focal motor seizures in this data set of non-EEG wearable
data, a selection of derived features are calculated from each of the three raw data modalities.
These features are chosen to meaningfully represent the changes in the signal between ictal
(seizure) and inter-ictal (non-seizure) phases. Each feature vector is calculated consecutively
from the raw time series data at a constant interval of two seconds, regardless of the actual
length of the feature window (see Figure 1). The choice of features in this study was
informed primarily by previous research in the field. The following details the feature
calculations for the biosignal modalities, ACC, EDA, and BVP.

For the ACC features, a number of parameters calculated from the recurrence plot are
used as features. Recurrence plots are a statistical tool to analyze recurrence in time series
data [27,28], and have been successfully used in the detection of motor movements from
accelerometer data before [7,29,30]. Here, we specifically calculate, from the recurrence
quantification analysis, the determinism (percentage of points that form diagonal lines of
a minimal length), the Shannon entropy (probability that a line has a certain length), the
average diagonal line length, and the recurrence rate (density of recurrence points). All of
these values are derived from overlapping data windows of a length of 10 s, centered at
each two-second interval.
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The EDA features used here are calculated from the skin conductance level (SCL) and
the skin conductance response rate (SCRR) [31–34]. The former is essentially a low-pass
filtered version of the original raw EDA signal and thus represents the slower tonic changes
in the EDA data. It is represented in the feature set by the difference of area under the curve
and maximum between the five minutes before (feature window) and after (baseline) each
two-second interval point. Additionally, the SCRR feature is calculated against the baseline
in the same way, representing the higher-frequency phasic changes of the EDA signal. The
SCRR is calculated as the number of threshold crossings of the first derivative of the EDA
signal in the window.

Finally, the BVP raw data (derived device-internally from the PPG sensor) is processed
to a heart rate (HR) estimation following the procedure described in Glasstetter et al.
2021 [35]: A peak tracking algorithm was applied to find local minima in the raw time
series [36], and the resulting inter-beat-intervals were processed to the HR estimation
employing several filters to produce a smooth and meaningful output. This HR estimation
as well as a spectral entropy score representing BVP signal quality [35,37] was used as
feature values. As the BVP signal is highly sensitive to motion artifacts [38], using a signal
quality index like this as a feature for classification follows the principle of regarding
artifacts as additional information, instead of discarding them outright. Furthermore, this
feature can be observed as a sort of indication for the quality of the model; a model that
is highly dependent on the data quality of a signal may not be regarded as a particularly
stable model. Additionally, the mean and maximum of the calculated HR feature over a
60-s window are used as features as well, which are baseline-corrected by the difference of
values between the feature and baseline window.

An overview of the different feature and baseline windows can be found in Figure 1.
A comprehensive listing of the individual features is shown below:

1. Four features calculated from the recurrence plot of the ACC signal in a ten-second window:

(a) Determinism, that is, the percentage of points that form diagonal lines of a
minimal length.

(b) The Shannon entropy of the probability that a line has a certain length.
(c) The average diagonal line length.
(d) Recurrence rate, that is, the density of recurrence points.

2. EDA-based features over a five-minute window, minus the same value in the five
minutes before the feature window:

(a) The area under the curve of the skin conductance level calculated as the
moving mean of the raw EDA signal over a one-minute window.

(b) The maximum value of the skin conductance level calculated as above.
(c) The skin conductance response rate calculated as the number of threshold

crossings of the first derivative of the smoothed EDA signal within the window.

3. Heart rate-based features calculated from the BVP signal:

(a) The local maximum of the heart rate estimation in a 60-s window, minus the
baseline value from the prior 60-s window.

(b) The mean of the heart rate estimation in a 60-s window, minus the baseline
value from the prior 60-s window.

(c) The spectral entropy data quality index of the raw BVP signal, sampled at
two-second intervals.

(d) The heart rate estimation calculated from the raw BVP signal, sampled at
two-second intervals.
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Figure 1. Overview of how the feature and baseline windows were chosen, for the three different
groups of features by modality. This calculation would result in one feature vector, for the next the
windows would all be shifted by an interval of T = 2 s to the right. Abscissa not to scale.

2.3. Evaluation

To assess the possibilities of detecting focal epileptic seizures by wearable biosig-
nal data, we investigate two different approaches: intra-subject and inter-subject. The
distinction is an important addition to this work, as focal motor seizures have not been
investigated to a degree that allows making the choice outright. While an inter-subject
approach, i.e., creating models that can detect seizures across a patient population without
individual adjustments, is certainly the best possible outcome, the heterogeneity of focal
seizures may dictate the use of individualized models. To examine the effect that this might
have with the given data set, the evaluation is divided into two parts. First, a subset of
participants with at least three seizures recorded is isolated, and the detection model is
evaluated per participant in a parameter-optimized leave-one-seizure-out cross-validation.
As the data set does not provide data with more than six seizures recorded for a single
participant, or with multiple independent recordings of a participant, this is performed
without a dedicated test set which is truly “out-of-sample”. Rather, the model is trained
with the data of all but one seizure and the respective peri-ictal data of 10 min before and
after each seizure. These data are standardized using the z-score method before training,
and the normalization parameters (centering mean and scaling standard deviation) are
stored. The resulting model is then tested on the remaining participant data and standard-
ized using the previously stored normalization parameters from the training step. This test
data includes the complete data set of the participant, including the left-out seizure, but
not any of the data used for training the model. Nevertheless, due to the high imbalance
between inter-ictal versus ictal phases, the proportion of data between the test and training
set is usually far greater than 10:1. This process is repeated such that each seizure of the
participant is left out once.

Secondly, the seizure data from all the participants with three or more seizures
recorded, selected in the first step, is used to validate the performance on data from
all the remaining participants with one or two focal motor seizures recorded. Thereby, the
model is first parameter-optimized in a leave-one-participant-out cross-validation on those
training participants. Thus, each of the participants in this optimization set is omitted from
the model training process once and used as a validation data set. The mean performance
scores over the cross-validation runs are then used to determine the optimal parameter
combination. In a second evaluation step, the optimized model, now trained with all the
peri-ictal seizure data from the training subjects, is then applied to all the data from the test
set participants. During the training of this model, the data are again first standardized
using the z-score method, and those normalization parameters are then applied to the
incoming test data. Overall this results in a model trained and optimized on data from one
set of participants, which is then tested on data from another separate set of participants.
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2.4. Classification Model

The gradient tree boosting machine (GTBM) [39,40] methodology was chosen as
the model used to detect ictal states, as it is relatively straightforward in its application
and already validated on the same cohort, albeit on data from patients with convulsive
seizures [7]. Due to this methodology’s requirement for parameter tuning to achieve
good performance, hyperparameter optimization was conducted in both the intra- and
inter-subject evaluations, as described above.

For the optimization of the intra-subject model, an optimal parameter combination
was found for each of the three included participants by performing a leave-one-seizure-out
cross-validation. Thereby, the model was trained on the data of all but one seizure and the
respective peri-ictal data, and tested on all remaining data including the left-out seizure
for that participant, minus the training data. This was repeated for all seizures, and the
performance scores were averaged. This procedure was then repeated for each combination
of parameters. For the inter-subject evaluation, a similar procedure was implemented for
the three selected participants, but in a leave-one-participant-out manner. The model with
the best parameter combination was then tested on out-of-sample data from previously
unseen participants.

Four different model parameters were optimized: the learning rate, the maximum
number of weak learners, the maximum tree depth per weak learner, and the misclassifica-
tion cost for false positives. Conversely, the misclassification cost for false negatives was
not tuned and kept unweighted, and only one type of boosting was used, namely adaptive
boosting for binary classification (“AdaBoost”) [41]. In total, the number of different pa-
rameter combinations over which the grid search optimization was performed added up to
600. The best parameter combination was chosen as the one with the highest sensitivity
and lowest number of false positives, in that order. In the case of a tie, the parameter
combination with a higher learning rate or lower number of trees was chosen as the best
one, as it would be computationally more efficient.

To gauge the significance of the various features for the creation of the model, the
predictor importance of each of the optimized models was analyzed. Therefore, the im-
portance scores for each of the models resulting from the single cross-validation runs was
averaged in the intra-subject leave-one-seizure-out evaluation, resulting in one set of scores
per participant included there. Moreover, for the inter-subject leave-one-participant-out
evaluation, only the importance scores of the optimal model, trained on all seizures from
those intra-subject evaluation participants, were noted. The feature importance was based
on decision tree node impurity, using the Gini diversity index and calculated such that
the smallest possible value was 0 [42,43]. Thereby, the importance scores for each of the
predictors are the averages over all the trained trees in the boosting ensemble for the
GTBM model.

2.5. Performance Measurement

The main indicators of performance used in this evaluation are the mean sensitivity,
false alarm rate (FAR) per 24 h (FAR24) and positive predictive value (PPV). These scores are
calculated from the number of overlaps of seizure events in the ground truth and predicted
labels. The label data, analogous to the feature data, are stored at two-second intervals, and
seizure events here are defined as consecutive intervals of labels classified as a seizure of at
least 6 s and at most 10 min. The prediction output of the classification model is furthermore
smoothed before this scoring computation, by filling out gaps between seizure labels of
at most 30 s, and removing any orphan seizure labels. After this processing of the model
output, it is compared to the ground truth and any overlaps of seizure events are counted
as true positives, seizure events in the ground truth but not in the predictions are counted
as false negatives, and vice versa; seizure events in the predictions that are not present in
the ground truth are counted as false positives. Note that the comparisons described above
are given a 2-min margin before and after seizure events in the ground truth, wherein
overlaps with prediction events still count as true positives. This is performed to account
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for some of the uncertainty related to seizure manifestations, as well as the in-hospital
setting providing a certain degree of nurse intervention after a seizure. True negatives are
not counted in this evaluation, as they do not give any more worthwhile information for
performance measurement. We also calculated the false alarm rate per night (FARn), that
is, during a standard eight-hour night between 23:00 and 07:00. Thereby, we counted how
many of the false alarms produced by the model occur during that time period, and divide
by the number of hours that were recorded during nights, taking into account any data loss
that may have occurred during these hours. The FAR per night is therefore calculated as
FARn = number of FP during night · hours per night

nightly hours recorded .
All data analysis, feature extraction, and performance evaluation was implemented

using MATLAB R2021b (MathWorks, Natick, MA, USA).

2.6. Data Set Selection

The complete data set of wearable data from 243 patients with epilepsy was filtered
to include only data relevant to the premise of this study. First, only data from those
participants who had at least one focal seizure recorded that involved tonic or clonic motor
manifestations were included. Thereby, these manifestations could co-occur with other
seizure manifestations; however, focal to bilateral tonic–clonic seizures were excluded.
Moreover, the data set was not filtered further by overlap of symptom location versus
device location. Therefore, the data set can, for example, include instances of motor seizures
that manifest primarily on the right hand side, but where the wearable device was attached
to the left wrist. Excluding these seizure instances would significantly reduce the number
of seizures and included participants for the analysis presented here, especially for the inter-
subject evaluation, to the point of impracticality. During the study recordings, the Empatica
E4 device was used in a Bluetooth streaming mode [25], which unfortunately led to a
significant loss of data due to regular problems with connectivity of the wearable device to a
base device that stores the data. Thereby, more than 50% of the potential data to be recorded,
and correspondingly as many potential seizures, were lost, leading to a significantly
reduced number of relevant focal motor seizures recorded for this study. Furthermore,
the data set was filtered for total length of recording per participant, where only those
recordings with at least 24 h of data were included, and for length of seizures, where only
those seizures with a duration between 10 s and 10 min are included. Limiting the duration
of seizures excludes very short seizures of just a few seconds, such as myoclonic seizures,
and very long seizures, such as status epilepticus. This is performed to exclude outliers
and to have defined limits of duration within which to detect potential seizure events.
Lastly, the data quality during all remaining seizures was visually checked, and specifically
those with bad EDA signal quality were excluded. A poor EDA signal can either be a flat
zero-line, indicating loss of contact of the electrodes with the skin, or multiple periods of
high rates of amplitude change, indicating a loosely fitting device. The BVP raw signal
was specifically not filtered for signal quality, firstly because it would filter out nearly
every remaining seizure due to its high susceptibility to motion artifacts, and secondly
because the feature set for this evaluation indeed includes a data quality index as a feature
itself. Figure 2 visualizes the data set selection process, and Table A2 lists clinical and
demographic information of the finally selected participants.
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Figure 2. Data set flowchart of the participant selection process. KCL: King’s College London; UKF:
University Medical Center Freiburg; E4: Empatica E4 wrist-worn wearable device.

3. Results
3.1. Data Set and Examples

The resulting data set used for this evaluation thus included 20 relevant seizures from
a total of nine study participants. The participants were 44% female (4 of 9) and had a
mean age of 45 years (range 9 to 69 years) at study enrollment. Three of these participants
had more than two seizures recorded for a total of twelve seizures (Table A1), and the data
from these was thus used for the intra-subject evaluation, as well as the training set for the
leave-one-participant-out cross-validation in the inter-subject evaluation. The remaining six
participants had either one or two seizures recorded, for a total of eight seizures included
in the inter-subject evaluation test set. The mean recording length per participant in this
data set was 83.2 h (range 35.8–127.6 h).

To give a better overview of the three participants with multiple seizures recorded
and used in the intra-subject evaluation, Figure 3 presents one example seizure for each of
these participants. Participant UKF1 had six seizures recorded with the wearable device, all
of them focal onset motor seizures with tonic and clonic manifestations, ictal tachycardia,
and impaired awareness. Furthermore, all of these seizures occurred while the patient was
sleeping in his hospital bed, and all have a characteristic progression. Overall, these seizure
symptoms the closest to focal to bilateral or generalized tonic–clonic seizures in the data
set, yet noticeably lack the severity of the larger seizures, both regarding the vEEG and
also the movements captured with the ACC signal. UKF2, on the other hand, had three
focal onset motor seizures recorded with only tonic manifestations, ictal tachycardia, and
miscellaneous awareness during the seizure. Notably though, all seizures occurred while
the patient was awake. Another important distinguishing factor for this participant is that
he was only nine years old at the time of enrolment, and as such the only pediatric patient
in the relevant data sets regarded here. Epilepsy in pediatric patients generally manifests in
different ways than for adults. The sole data set from the KCL site, KCL1, had three seizures
recorded that match the criteria for the seizure type. The motor manifestations for them
were more heterogeneous than for the other two participants. All had tonic components,
but there were also some oral automatisms, and one seizure also had clonic components.
Furthermore, one seizure did not prompt ictal tachycardia, and there was a high variance
between the seizure durations, with one being over two minutes and occurring while awake,
and the other two only 22 s, occurring from sleep. Aside from the movements during the
seizures, Figure 3 also gives a good overview of the typical EDA and BVP responses in the
data, which can be observed most clearly in the first presented seizure UKF1-4. The EDA
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signal shows a clear response to the seizure, and the feature, the difference in the maximum
of the skin conductance level, accordingly, is at its highest during the seizure. The heart rate
estimated from the BVP sensor signal also clearly demonstrates some response after the
seizure onset for all three examples; however, at the same time, the signal quality also drops
significantly, and as such the estimated heart rate should not be regarded as representative
for these periods.

(a)

(b)

(c)

Figure 3. Selection of examples of true positive detections for each of the three participants in the
intra-subject evaluation. Seizures shown are: (a) UKF1-4; (b) UKF2-3; (c) and KCL1-3 (see Table A1).
Due to the grace period of 2 minutes around a seizure event, the detection for KCL1-3 counts as a
true positive. Each plot of a seizure shows the raw ACC signal (top), the raw EDA signal and feature
2b (middle), and the estimated heart rate and signal quality index of the BVP signal (bottom). The
regions highlighted in red mark the ground truth as labeled by experts, and those highlighted in
green mark the seizure intervals, as predicted by the respective model, trained on the data of all the
other seizures of the participant. The seizure onset and offset are additionally marked by the black
vertical bars. All signals shown are normalized between −1 to 1 only for these plots. The original
value ranges before normalization can be found in Table A3.
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3.2. Intra-Subject Evaluation

Data from three participants were selected for the intra-subject evaluation. One patient
was selected from the London cohort with three seizures recorded (KCL1), and two from the
Freiburg cohort with six (UKF1) and three (UKF2) seizures recorded, respectively. Out of
these twelve seizures, only one seizure, for participant UKF2, could not be identified in the
individual optimized leave-one-seizure-out evaluation. All other seizures were consistently
detected in the complete participant data by the optimized models, when trained on the
other seizures for the respective participant. In terms of false alarm rate however, the
methodology exhibited vastly different performances over the three participants. The
cross-validation runs for participant UKF1 showed the lowest number of false positives at
just three on average, ranging from 1 to 5 depending on which of the seizures was left out
for testing. Overall, this results in a low false alarm rate of less than one per 24 h (0.85/24 h).
For the other two cases, the false alarm rate was considerably higher, at almost two per
hour for UKF2 (41.5/24 h) and somewhat less than one per hour for KCL1 (17.7/24 h),
on average. An overview of the per-participant results of this evaluation can be found in
Table 1 under “Intra-Subject Evaluation”.

Table 1. Evaluation results for the intra-subject leave-one-seizure-out evaluation, and the inter-subject
leave-one-participant-out evaluation, respectively. Means and ranges are always across the single
folds of the validations, that is, across the held-back data for the first part and across the held-back
data, and test set participants, in the second part. FP: false positive; FAR24: false alarm rate per 24 h;
PPV: positive predictive value; FAR: false alarm rate; LOPO: leave-one-patient-out cross-validation.

Patient ID Sensitivity Mean FP
[Range]

Mean FAR24
[Range]

Mean PPV
[Range]

Mean FAR
per Night
[Range]

Recording
Duration

Device on
Same Hand
as Seizure

Intra-Subject Evaluation

UKF1 100% (6/6) 3 [1–5] 0.85
[0.28–1.42]

28.3%
[16.7–50%] 0 84.4 h 100% (6/6)

UKF2 67% (2/3) 79 [18–126] 41.52
[9.42–65.94]

0.6%
[0–1.1%] 6.3 [1–11.5] 45.9 h 100% (3/3)

KCL1 100% (3/3) 37 [0–58] 17.69
[0–27.72]

34.5%
[1.7–100%] 1.9 [0–3.0] 50.2 h 0% (0/3)

Inter-Subject Evaluation
LOPO UKF1 50% (3/6) 28 7.96 9.7% 3.1 84.4 h 100% (6/6)
LOPO UKF2 100% (3/3) 124 64.9 2.4% 9.5 45.9 h 100% (3/3)
LOPO KCL1 67% (2/3) 1 0.48 67% 0 50.2 h 0% (0/3)
LOPO test

(N = 6) 75% (6/8) 55
[16–87]

13.4
[4.4–22.7]

2.1%
[0–5.9%]

2.0
[0.7–3.2] 568.6 h 38% (3/8)

3.3. Inter-Subject Evaluation

To assess the performance of seizure detection across multiple patients, the GTBM
model is first trained using the peri-ictal seizure data of the 12 seizures from the three
participants mentioned above. The model is thereby parameter-optimized in a leave-one-
participant-out manner, as explained in the Materials and Methods. In this cross-validation,
the model with the best-performing parameter combination was able to recognize a total of
eight of the twelve seizures (overall sensitivity 67%, mean 72%, and range 50–100%) in the
validation set, with a mean false alarm rate of approximately one per hour, averaged over
the three participants (mean 24.4/24 h; range 0.5/24 h–64.9/24 h). The resulting model is
then applied to the complete data sets of six other participants, including a total of eight
epileptic focal motor seizures. In this out-of-sample test set, the model was overall able
to detect six of the eight seizures (overall sensitivity 75%, mean 75%, and range 0–100%)
with a mean false alarm rate of 13.4 per 24 h (range 4.4/24 h–22.7/24 h). Table 1 shows a
summary of these across-participant results under “Inter-Subject Evaluation”.



Sensors 2022, 22, 3318 11 of 20

3.4. Feature Importance

The feature importance for each of the three optimal models trained on data from
the three per-subject evaluation participants was calculated as outlined in the Materials
and Methods. Figure 4 shows these importance scores per participant and feature, and the
mean scores of each feature group by modality. These feature scores are unitless and can be
interpreted qualitatively to determine whether some specific feature or general modality
is contributing more than the others. Here, the EDA features were more influential than
the others in both the participants, UKF1 and KCL1. Conversely, the BVP features were
unexpectedly more meaningful for the model of participant UKF2 than the other two
modalities. The same kind of feature importance scores for the inter-subject model trained
on all three of these participants for the inter-subject evaluation can be found in Figure 4d.
Here, the EDA features are demonstrated to be more important than the others.

(a) (b)

(c) (d)

Figure 4. Feature importance scores per intra-subject evaluation for the seizure detection models of
the three selected participants: (a) UKF1; (b) UKF2; (c) KCL1 (see Table A2); (d) Feature importance
scores of the model resulting from training the GTBM model on the seizure data of all three inter-
subject training participants. Blue, red, and yellow bars show the importance scores for the features
grouped by biosignal modality ACC, EDA, and BVP, respectively. Horizontal lines mark the mean
scores of the groups. The ordinate is unitless; the scores can be interpreted qualitatively. The feature
labels correspond to the listing of features in the Materials and Methods.

4. Discussion
4.1. Principal Findings

The main ambition of the evaluation presented here was to qualitatively assess the
utility of multimodal biosignal data from wearables in creating worthwhile and robust
seizure detection systems. Thereby, two principal avenues of potential study design
were investigated: intra-subject and inter-subject schemes. Specifically, we focused our
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evaluation on focal motor seizures with tonic or clonic components, as opposed to bilateral
tonic–clonic seizures. These focal seizures have a multitude of possible physical and
psychological manifestations that can occur in sequence or in parallel and be repeated
or not occur at all, in a single seizure. Furthermore, while there may oftentimes be little
change in the semiology of seizures for a single patient with epilepsy, they can be very
heterogeneous across populations [2,44]. These circumstances are also reflected in our
results. Among the three participants with at least three seizures recorded, the individually
optimized model could robustly recover the left-out seizures in the leave-one-seizure-out
cross-validation for two participants.

In one other participant, however, out of three seizures, one could not be restored by
the model when trained on the other two (Table A1 and Figure 5). These three seizures
had roughly the same semiology with tonic manifestations and ictal tachycardia. In
the wearable data, however, one clear difference can be found between this seizure and
the other two; that is, it had no discernable EDA response before, during, or after the
seizure. Additionally, this participant UKF2 had an important demographic difference to
all other included participants in this data set, in that they were the only pediatric patient
at nine years old. Age has been linked, for example, to significant changes in seizure
semiologies [45]. These circumstances likely led to this specific seizure falling out of the
scope of this methodology.

Figure 5. Seizure UKF2-2, a false negative. Compare also to Figure 3. Data shown from top to bottom:
raw ACC, raw EDA and feature 2b, heart rate and BVP signal quality index. The red overlay is the
seizure ground truth. The seizure onset and offset are additionally marked by the black vertical bars.
All signals shown are normalized between −1 to 1 only for these plots. The original value ranges
before normalization can be found in Table A3.

These results suggest that a methodology such as the one presented here, optimized on
individual participants, can robustly detect seizures for some patients with epilepsy, but it
may fail, especially when the seizures have differing semiologies that are not represented in
the training data for the model. Furthermore, when looking at the false alarm rate per 24 h
(FAR24) and positive predictive values (PPV), the heterogeneity of focal seizure detection
is especially highlighted. The FAR24 performance of the seizure detection, ranging from
less than one false positive (FP) per day to almost two FP per hour, is an important factor
when it comes to actually applying the methodology to a real-world setting. Similarly,
this false alarm rate also carries over to the nighttime, with multiple false positives per
night for some participants. Thus, a high sensitivity in detecting seizures is in vain if an
automated seizure diary is filled with dozens of false seizure events per day. Yet, further
data recordings and model optimization may produce robust seizure detection systems for
individual patients.

With respect to the inter-subject evaluation across multiple study participants, the
results for the methodology applied here further demonstrate the heterogeneity of the
focal motor seizures in this data set, and clearly demonstrate the resulting difficulties.
Inter-subject models applied in a leave-one-participant-out manner to data of the three
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selected participants from the intra-subject evaluation perform worse than if trained in an
individualized manner, at least either in terms of sensitivity or false alarm rates. Likewise,
testing the model on out-of-sample data of six other participants resulted in a tolerable sen-
sitivity but a high false alarm rate and low PPV. A model such as this would be ineffective
in real-world settings, be it as an automated seizure diary or an alarm system, and patients’
and caregivers’ needs, in particular, would not be fulfilled [46–48].

Overall, the results so far suggest that not only are focal onset motor seizures varied
in their clinical manifestations, they are also sensitive to changes in common wearable
biosignal modalities, when investigated across patients. However, in some individual
patients, seizure semiologies are similar enough across seizures to enable robust seizure
detection models for less-severe focal onset motor seizures, if the models are optimized in
a personalized manner.

4.2. Related Work

To compare our results to some of the current and past state-of-the-art seizure detection
studies, we compiled a list of twelve works featuring focal motor seizures in some form in
their set of analyzed seizure types (Table 2). The main source of this list was the extensive
literature review by Beniczky et al., 2021 [4], filtered for relevant seizure types and relevant
biosignal modalities that are most closely related to the modalities ACC, EDA, and PPG.
Furthermore, to add some variety, we also included two recent studies employing wearable
EMG- and EEG-based focal seizure detection. We aimed to compare all three of our
performance measures, namely sensitivity, FAR24, and PPV; however, as most of these
works include focal motor seizures as part of a larger group of seizure types, almost always
dominated by generalized and focal to bilateral seizures, we were only able to find three
studies where this was possible for all three measures [9,11,20]. All three of these studies
classify the focal onset seizures in their respective data sets as complex partial seizures
(CPS), which is an older type of epileptic seizure classification meaning an interval with
ictal impaired awareness without giving information about motor manifestations during
the seizures. Therefore it is unclear if, with respect to movements during the seizures, the
seizure types investigated in these works are comparable to those in the study presented
here. Moreover, all three studies evaluated their seizure detection in an inter-subject manner
across a population of patients with epilepsy.

Summarizing the relevant results from these three works, Cogan et al. 2017 [9] use a
combination of two different wearable devices to record the biosignal modalities EDA, ECG,
and SpO2, and report an algorithm sensitivity of 50% with a false alarm rate of 0.28 per
day, in CPS only. Notably, during their analysis they also look into personalization of their
algorithm, and conclude that a minimum of 6 to 8 seizures per patient would be required to
sufficiently train and optimize their algorithm parameters, based on a worst-case scenario.
Kusmakar et al. 2019 [11] employ ACC sensors in a leave-one-participant-out inter-subject
evaluation and report a sensitivity of 67% and a FAR24 of 4, regarding the participants
with CPS. They duly conclude that these seizures are much more similar to inter-ictal data
than they are to ictal GTCS data, and as their data set includes only a very small number of
CPS, a good performance on this seizure type is not to be expected. Lastly, Vandecasteele et
al. 2017 [20] compared two wearable devices recording ECG and PPG, respectively, and
reported an overall sensitivity of 32% with a FAR24 of 43.2 for the PPG-based wearable
device, which was the same as the one used in this study. They conclude that the PPG-
based detection was significantly hindered by motion artifacts even for these possibly
non-generalized seizures.

Comparing these performances, and further results from other related work, which
did not report their outcomes per seizure type or per participant (Table 2), in our results
(Table 1), it becomes clear that a sensitivity of 75% in an independent test set of focal motor
seizures is in fact among the top performing methodologies regarding this seizure type only.
Furthermore, works that reported lower numbers of false positive rates also consistently
had lower sensitivities, and some studies that reported similar numbers nevertheless still
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had lower sensitivities. Overall, a comparison of our results to any of these works should be
taken with caution, as it is to the best of our knowledge the first work analyzing specifically
focal motor seizures with multi-modal non-EEG wearable data.

Table 2. Related work compiled from Beniczky et al., 2021 [4], and this study as comparison. Only
those works are included that involve seizure types relevant to this study, that is, any of focal motor
seizures, SPS, CPS, or other non-generalized seizures. FAR24: false alarm rate per 24 h; PPV: positive
predictive value; FS: focal seizures; SPS: simple partial seizures; CPS: complex partial seizures;
hyper: hypermotoric seizures; myo: myoclonic seizures; FS min mot: focal seizures with minimal
motor component.

Study Modalities Seizure Types # Pat.
w/Seizures # Seizures Sensitivity FAR24 PPV

this study ACC, EDA,
PPG FS tonic or clonic 9 20 67–100%/75% 0.85–41.5/13.4 0.6–

34.5%/2.1%

[6] + ACC, PPG FS hyper/other
major (28 total) 5/14 73%/84% Not reported per seizure type

[8] + ECG FS/SPS/CPS/other (31 total) 8/26/31/5 Not reported per seizure type

[9] +,*,§ EDA, ECG,
SpO2 CPS 8 23 16.7%/50% 0.7/0.28 6.25%/50%

[10] + ECG SPS/CPS (16 total) 37/38 19%/71% Not reported per seizure type

[18] ACC Tonic/tonic-clonic 15 22 67%/100% Not reported per seizure type

[11] +,* ACC CPS 3 5 67% 4.19 22.5

[49] + ACC, EDA FS tonic-clonic 2 6 50% Not reported per seizure type

[12] + ACC Myo, tonic/FS
hyper/FS min mot (41 total) 140 6%/24%/2% Not reported per seizure type

[14] + ACC, ECG FS hyper/myo,
tonic cluster 5/5 18/9 Not reported per seizure type

[20] ECG/PPG CPS 11 47 70%/32% 50.6/43.2 2.15%/1.12%

[50] EMG GTCS/tonic/clonic/
other motor 20 18/9/3/17 83%/56%/33%/76% - 83%/50%

(t+c)/76%

[51] EEG, ECG,
ACC

Focal tonic/focal
nonmotor 3 47/9 + 9 84%/100% 8/13 + 5 -

+ The study also contained other seizure types, most notably generalized seizures, however the presented data
only relates to those seizure types specifically mentioned. * Performance scores only include CPS, calculated by
authors from original reported numbers. § Performance scores represent a non-optimized detection, and a refined
analysis, respectively.

4.3. Modality Importance

Overall, the distributions of feature importance scores, as a proxy for the importance of
biosignal modalities, seem to be heterogeneous and no clear winner can be found amongst
the three examples. The features calculated from the EDA signal, however, seem to be
the most informative with respect to epileptic seizure phases, within this data set of focal
onset motor seizures. This is concurrent with some prior research on generalized seizures
as well [52–55], and suggests that electrodermal activity could be an important clinical
marker of epileptic seizures beyond highly convulsive episodes, which usually induce
heavy sweating. However, it is not a universally applicable biomarker, as these results
also suggest, with at least one participant and several seizures exhibiting no significant
(post-)ictal EDA response, as is also concluded in further literature on the topic [34,56,57].

In Glasstetter et al., 2021 [35], the authors explore the utility of wearable PPG signals
for the detection of focal onset seizures with ictal tachycardia, and conclude that in some
patients the tachycardia thresholds can be found regardless of seizure-related movements.
It seems to be the case that in some seizures the ictal tachycardia presents itself some few
seconds before the electrographic seizure onset, and could therefore be used as indicators
for seizures, albeit not effectively in a monomodal system. The authors, however, also
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note that arbitrary non-seizure-related movements may hinder this detection from PPG
signals due to motion artifacts, and generally, pre-ictal tachycardia seems to be an isolated
phenomenon not generalizable over patient cohorts. Our results, demonstrating that BVP
features are important only for one of three patients with at least three seizures recorded,
coincide with these conclusions.

4.4. Limitations

The main limitation of the study and analysis presented here is the limited size of the
data set, with just 20 seizures recorded from nine patients with epilepsy. Unfortunately,
publicly available data sets focusing on classical wrist-worn wearable data which combine
movement and autonomous nervous system biosignals are scarce as it is, and practically
nonexistent in the field of epilepsy research. To be considered a useful supplement to
the data collected here, a public data set would need to provide at least ACC, EDA, and
BVP data recorded from a wrist-worn wearable in a cohort of patients with epilepsy, and
at least EEG seizure onset and offset would need to be labeled by experts. To the best
of our knowledge, such a data set does not currently exist in an open source form. The
relatively small size of the data set used here is also the main reason we used “classical”
supervised machine learning with a set of specifically tailored features as opposed to some
deep learning methodology. Deep learning may, however, be an avenue to pursue in a later
study, with a more extensive data set.

As the seizure types regarded here were carefully chosen, a large percentage of the
overall recorded seizures were not eligible for inclusion. Furthermore, during their usually
week-long stay at the epilepsy monitoring units, patients rarely have more than a few
seizures in the first place, as seizure provocation is often conducted only for a limited time
until enough seizures have been observed to serve some clinical purpose. This leads to
a generally low number of study participants with more than two seizures recorded, a
necessary minimum requirement for any kind of analysis of personalized, intra-subject
evaluations. Future research may include more seizures and seizure types from our already
recorded data set, but new studies need to be conceptualized to aim for higher numbers
of seizures recorded per participant, not just over the whole cohort, in order to push focal
seizure detection research to produce better, more realistically applicable results [46].

Another limitation of this study, as well as many other related works, is the confine-
ment of participants to a hospital room throughout the data recording procedures. The data
collected and analyzed here cannot be regarded as representative of real-world situations,
and new ambulatory studies with a prospective goal of recording focal onset seizures with
wearables from patients in their daily living environment are needed. However, even with
generalized tonic–clonic seizures as a target, these phase 3 and 4 studies are still rare, and
potential methodologies and pitfalls need first be explored in these in-hospital studies
before worthwhile out-of-hospital studies can be designed.

5. Conclusions

Seizure detection for focal onset seizures without generalization by means of wear-
able non-EEG devices is a so far little-researched problem. We demonstrate that for those
seizures in this category with tonic or clonic movements, that is, those closest in semiol-
ogy to generalized tonic–clonic seizures, robustly detecting seizures from wearable data
may be possible for individual patients with epilepsy, depending on their specific seizure
manifestation. Overall, electrodermal activity signals seem to provide the most informative
features for seizure detection, suggesting it to be an essential part of any future seizure
detection research. Detection across patients with purely inter-subject models without
personalization is, however, not possible to a worthwhile degree, at least with the method-
ology and data set presented here. Both a low sensitivity that misses a quarter or more of
the seizures and high false alarm rates in the order of one per hour make current results of
these inter-subject models ineffective for clinical applications. Our results thus demonstrate
that individualized models are needed to robustly detect focal onset seizures, and future
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research in this domain should include at least some degree of personalization in the
modeling process.
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Appendix A

Figure A1. The Empatica E4 wrist-worn wearable device used in this study (left), and the Android
phone application that connects to the wearable via Bluetooth and records the data stream (right).
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Table A1. Seizures recorded for the three participants used in the intra-subject evaluation. iTC: ictal
tachycardia; UI: urinary incontinence.

Seizure ID Seizure Duration Motor Symptoms Autonomic Symptoms Awareness Vigilance/Body Position

UKF1-1 82 s Tonic, clonic iTC Impaired Asleep/lying

UKF1-2 86 s Tonic, clonic, myoclonic,
automatisms (arms, legs) iTC, UI Impaired Asleep/lying

UKF1-3 55 s Tonic, clonic, myoclonic iTC Impaired Asleep/lying

UKF1-4 73 s Tonic, clonic, myoclonic,
automatisms (legs) iTC Impaired Asleep/lying

UKF1-5 43 s Tonic, clonic iTC Impaired Asleep/lying
UKF1-6 47 s Tonic, clonic, myoclonic iTC Impaired Asleep/lying
UKF2-1 23 s Tonic iTC Aware Awake/sitting

UKF2-2 * 39 s Tonic iTC, flushing Impaired Awake/lying
UKF2-3 107 s Tonic iTC, flushing Impaired Awake/sitting

KCL1-1 128 s Tonic, clonic, automatisms
(arms, face) iTC Impaired Awake/sitting

KCL1-2 22 s Tonic, automatisms (face) iTC Impaired Asleep/lying
KCL1-3 22 s Tonic, automatisms (face) - Impaired Asleep/lying

* Seizure was not recognized by the model during evaluation.

Table A2. Demographic and clinical information for the nine selected participants. TLE: temporal
lobe epilepsy; FLE: frontal lobe epilepsy; xTLE: extratemporal lobe epilepsy.

ID Gender Age Total Recording Duration # Seizures Recorded Epilepsy Origin Epilepsy Type

UKF1 m 55 84.4 h 6 Structural Focal (TLE)
UKF2 m 9 45.9 h 3 Structural Focal (xTLE)
UKF3 f 27 92.0 h 2 Structural Focal (TLE)
UKF4 f 69 120.8 h 1 Structural Focal (TLE)
UKF5 m 50 127.6 h 2 Structural Focal (FLE)
UKF6 f 34 35.8 h 1 Unknown Focal (FLE)
UKF7 m 48 105.1 h 1 Structural Focal (TLE)
UKF8 f 46 87.2 h 1 Structural Focal (TLE)
KCL1 m 65 50.2 h 3 Structural Focal (TLE)

Table A3. The original value ranges for the plotted data in Figures 3 and 5, before normalization.
ACC: accelerometry; EDA: electrodermal activity; BVP: blood volume pulse; HR: heart rate.

Seizure ID Data Range ACC x [g] ACC y [g] ACC z [g] EDA Raw
[µs]

EDA Feature
[a.u.]

BVP HR
[bpm]

BVP Quality
[a.u.]

UKF1-4
ictal min −1.7031 −0.9688 −0.6406 0.2602 5.0397 50.7644 0.0917

max 0.6094 0.2344 1.9844 5.7441 7.8344 121.0513 0.2325

non-ictal min −1.1563 −1.3750 −0.5313 2.0375 −4.4675 48.9167 0.1241
max 0.9219 0.0625 1.1875 11.1237 8.0093 137.2188 0.3376

UKF2-2
ictal min −1.5000 −1.1406 −2.0000 0.2770 −0.0152 70.0432 0.1664

max 1.8906 1.9844 1.0938 0.6421 −0.0152 102.9488 0.2530

non-ictal min −2.0000 −2.0000 −2.0000 0.2975 −0.0385 57.6646 0.1367
max 1.9844 1.9844 1.9844 0.8484 0.0117 119.5292 0.32395

UKF2-3
ictal min −2.0000 −1.2500 −2.0000 0.0051 0.1558 51.2767 0.1242

max 1.4219 1.7031 1.9844 0.3472 0.2559 124.4696 0.2306

non-ictal min −2.0000 −2.0000 −2.0000 0.0000 −0.2570 43.3582 0.1185
max 1.9844 1.9844 1.9844 0.6789 0.2959 147.5059 0.312448

KCL1-3
ictal min −0.9219 0.2969 0.3281 5.9464 33.3491 66.5748 0.1346

max −0.7188 0.4219 0.6875 6.3181 33.5858 136.6889 0.1641

non-ictal min −1.4688 0.0469 −1.4688 0.0000 −40.6902 54.5837 0.1157
max 0.9063 0.6875 1.9063 51.4717 33.7534 118.9363 0.3457851
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