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Abstract: We present a benchmark dataset for evaluating physical human activity recognition meth-
ods from wrist-worn sensors, for the specific setting of basketball training, drills, and games. Bas-
ketball activities lend themselves well for measurement by wrist-worn inertial sensors, and systems
that are able to detect such sport-relevant activities could be used in applications of game analysis,
guided training, and personal physical activity tracking. The dataset was recorded from two teams
in separate countries (USA and Germany) with a total of 24 players who wore an inertial sensor on
their wrist, during both a repetitive basketball training session and a game. Particular features of
this dataset include an inherent variance through cultural differences in game rules and styles as
the data was recorded in two countries, as well as different sport skill levels since the participants
were heterogeneous in terms of prior basketball experience. We illustrate the dataset’s features in
several time-series analyses and report on a baseline classification performance study with two
state-of-the-art deep learning architectures.

Keywords: wearable activity recognition; dataset; basketball; wrist-worn sensing

1. Introduction

Human activity recognition (HAR) systems aim to track people’s physical movements
and categorize them according to predefined activity classes or clusters. Methods from
machine learning, and especially deep learning, are applied in order to classify samples of
sensor data into predefined classes. According to [1], only 30 datasets in total have ever
been released publicly and 11 out of the 13 most cited datasets in the HAR community
were released in 2015 or prior. Such datasets, especially the older ones, are commonly
recorded in laboratories and follow strict activity protocols and movement patterns. Since
scientists are lacking solid annotation methods and tools for recordings in the wild, they
tend to fall back to a controlled lab environment, in which visual systems, often cameras,
can be installed to facilitate labeling the sensor data in hindsight. Due to the labor-intensive
work of labeling data, the number of participants is often limited. Significant hurdles for
experiments conducted in the wild lead to an imbalance in the number of publicly available
datasets from controlled environments in comparison to uncontrolled environments.

However, depending on the design of the experiment itself, a sports environment,
e.g., Figure 1, can be seen as a semi-controlled environment, since its recording sessions
can include both practice drills (controlled) and game sessions (uncontrolled). Due to the
nature of the sports domain, this data contains highly variable and dynamical movement
patterns, which exhibit high intraclass variability, as well as high intersubject variability [2]
due to gender, height, weight, personal play style, and athletic ability of the subject. These
differences are important in real-world scenarios, and classifiers in general perform worse
on in-the-wild datasets than on lab-recorded datasets due to effects such as weak labeling [3]
or smoothness in the performed activities [4]. Therefore, providing a publicly available
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dataset containing complex sports-related activities can have an important impact on how
we design and validate our future HAR algorithms and gives researchers the security of a
semi-controlled environment with precise labels based on video recordings.

Figure 1. A scene and activities from the dataset: Offensive play of player 12 (yellow) and player 6
(red), see Table 6, with player 12 dribbling the ball (1), (2) and then passing (3) it to player 6. Player
6 then performs a layup (4). Video frames 1–4 and the performed activities are highlighted in the
time-series below. The activity running is marked as yellow, layup as red, dribbling as mauve and pass
is colored in blue.

Many previous studies, as summarized in Table 2 (for sports), Table 3 (for basketball),
and earlier published surveys (e.g., [5,6]), demonstrate that there is an interest in using
inertial measurement unit (IMU)-based wearable solutions for activity recognition in sports.
Professional athletes use sensor-based training methods to improve their sporting skills.
The German professional soccer clubs, Hannover 96 and 1. FC Magdeburg utilize the
commercial body-worn IMU sensors, Vmaxpro [7], which monitors the athletes’ movements
and presents training recommendations, including specific strength training exercises,
via smartphone for the trainer and athlete. In 2021, the sports fashion company Adidas
released a sensor-equipped inlay sole for a soccer shoe [8], which is capable of detecting
soccer-specific activities. Similarly, in 2020 the Finnish-based company SIQ [9] released a
sensor-equipped basketball with feedback aiming to improve players’ shooting skills.

Contributions: This dataset is the first publicly available dataset with sensor-based
basketball activities collected from teams of players doing both structured practice drills
and an unstructured game. The classes included were selected by researchers with many
years of experience in playing basketball and represent a full range of basketball activities
that cover key aspects of the sport. The activities included show high dynamics, complexity,
and variability within the same subject (due to different execution styles) and also between
subjects (due to experience and play style). Since recordings are split into warm-up, drill,
and game sessions, the dataset provides a mix of controlled and uncontrolled environments.
The game shows a higher dynamic because of the influence of other players and a higher
pace than that in the drills. This setup can be seen as a transition from a controlled
environment to a semi-controlled recording environment. Because the dataset does not
contain information about successful scoring, it is not necessarily meant to be used for skill
assessment. However, the metadata does contain information about the players’ experience
(novice or expert). Novices are players with little prior experience in playing basketball.
Players’ execution of activities can therefore be expected to display a large variance. Since
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the dataset was recorded from 24 participants (roughly the size of two complete teams)
across two continents, it also includes the inherent differences within the rule sets played
by the International Basketball Federation (FIBA) in Europe and the National Basketball
Association (NBA) in Northern America. This is a unique setup that is not available in
other sports.

Impact: This dataset can be used by the Ubiquitous Computing community to tackle
a variety of research questions in the area of Human Activity Recognition. A (sports)
dataset of this scope and study design is not yet publicly available, since it contains the
same set of activities recorded with the same hardware and sensor modalities in both
controlled and uncontrolled environments. The study is multi-part where some parts
are controlled by prescribed activities and other parts are uncontrolled, such as a “free-
movement” game. The nature of basketball is such that this mix of controlled conditions
is easily captured in video and manually labeled in detail. The multi-part study adds
complexity and diversity to the data and gives researchers a new playground to benchmark
algorithms and approaches as well as (possibly) spot deficiencies in existing state-of-the-art
architectures. Furthermore, the game phases include data that models team and game
dynamics. This feature is something that can be explored deeper by future studies with
regard to group activity recognition. This work provides layered labels, or multi-labels, as
certain activities consist of a series of other activities. The complex characteristics of the data
and the differences due to the location can help to address open research problems, such
as Transfer Learning and Data Augmentation, recognizing complex activities in dynamic
and real-world environments. Further development in these areas may include—but is not
restricted to—research focused on data recording techniques and annotation procedures,
data preprocessing (e.g., data segmentation), feature extraction or developing new deep
learning methodologies and evaluation methods. Methodology-wise, we restricted our
recording setup to commercial and mostly open-source recording components (in particular
the smartwatches and their firmware). Such a low-effort recording setup has the significant
advantage of being deployable in spontaneous situations and would not be restricted
to basketball—if further developed. The labeling setup builds on previous work by the
community and focuses on reproducibility by other research labs.

2. Motivation

Basketball is played across the globe, but the two of the most dominant rule sets are
(1) Fédération Internationale de Basketball (FIBA) [10], which is played by: Basketball
Champions League, Euroleague Women, Basketball Champions League Americas, FIBA
Europe Cup, EuroCup Women, FIBA Asia Champions Cup, FIBA Intercontinental Cup,
Olympic Games, etc. and (2)—the most important basketball league worldwide—the
National Basketball Association (NBA) [11]—played in North America. The two sets of
rules are similar but differ in several details [12]. For example, in contrast to the FIBA rules,
NBA rules allow players to do a so-called 0-step—an additional step between catching the
ball and the first dribble. Other differences include game time (40 min for FIBA games
vs. 48 min for NBA games) and basketball court dimensions (28 m × 15 m for FIBA vs.
28.7 m × 15.2 m for NBA). In addition to these differences, the play styles in professional
European and North American basketball tend to be slightly different as well. NBA teams
often build their game around one or a few star players and a more aggressive defense. In
contrast, European teams focus more on team play and a compact defense.

Basketball is a very dynamic and highly intense sport that combines fast movements,
quick switching between offense and defense, and diverse execution of activities. Activities
in this sport can be characterized into one of the following activity categories: (1) short
actions or micro-activities (passing or rebounding), (2) complex activities (shooting the ball,
layups), and (3) periodical activities (sitting, standing, walking, running, and dribbling).
These activities are performed differently by every player, but also by the same player
depending on factors such as in-game situations, physical fatigue and stress level, mental
state, and improving skills over time. For that reason, the three research challenges defined



Sensors 2023, 23, 5879 4 of 32

in 2014 by Bulling et al. [13]—(1) intraclass variability, (2) interclass similarity, and (3) the
NULL-class problem—are all reflected by the dataset presented here. These three challenges
become more significant with less structured, real-world data, such as data from a real
basketball game. In a game situation where external influences, such as other players, affect
the gameplay and physical movements, these characteristics are more apparent.

A dataset such as the one presented in this article, which is recorded during two
real basketball training sessions lasting between 1 and 2 h, also offers the opportunity
to close the gap between controlled and uncontrolled study setups. After a few minutes
in the warm-up session, participants reported that they forgot that they were monitored
through their smartwatches and nearby cameras, and behaved like they would in a usual
training session. We argue that the basketball game part of the dataset equally encouraged
participants to move naturally [4,14]. Results show that even though science is advancing
fast in the area of HAR, it is still challenging to train machine learning models that are
capable of reliably detecting activities in naturalistic scenarios, such as [15]. In order to
overcome this challenge, we consider the next important step in HAR to be that future
algorithms are developed and evaluated on realistic datasets. Sports HAR datasets in
general can be the perfect setting for researchers to do exactly this and they could allow
for deeper insights for sports scientists as well as the deep learning and HAR community.
Specific datasets that contain sports activities, e.g., DSADS [16] or the study presented
by Trost et al. [17], often contain a variety of different sports in one dataset and reduce
entire sports, such as playing basketball, to single target classes to be detected. The UTD
Multimodal Human Action Dataset [18] contains four repetitions from eight subjects of
27 different activities from a variety of domains, such as sports. However, the included
sports activities are limited to one specific activity per sport, e.g., shooting a basketball.
Activities from these datasets are not representative of an entire sport. Inertial sensor-based
and sports-specific datasets that capture the variability and complexity of a sport are not yet
available on public repositories. Even recently published datasets, such as TNDA-HAR [19],
focus on simple periodical locomotion activities, and additionally, available datasets that
are used by the Ubiquitous and Pervasive Computing community rarely combine (1) scope,
(2) quality, (3) variability, (4) complexity, and (5) reproducibility in the same benchmark
dataset. The basketball data published by [16–18] does not represent the same level of
complexity regarding the recently mentioned characteristics with the dataset we present
since the class defined as basketball is highly simplified. We, therefore, highlight this as one
of the main motivations for such a dataset. The following Table 1 gives an overview of
relevant HAR datasets. As one can see in the Environment column, most of the datasets
are recorded in controlled environments, partly because data collection is easier, and partly
due to the lack of annotation methods without synchronized video recordings. Tools
such as [20,21] or [22] are designed to be used in hindsight, with video footage and with
well-defined synchronization gestures at the beginning and end of the video. Among the
datasets presented in Table 1, only ActiveMiles [23] and Leisure Activities [15] are recorded
in an uncontrolled environment. ActiveMiles is limited to simple locomotion activities, and
Leisure Activities consist of six participants’ wrist-worn inertial data over a week where
each of them performed one specific leisure activity daily. The WetLab dataset can be seen
as recorded in a semi-controlled environment, where participants were told to follow a
specific protocol for an experiment in the wet lab, but they were allowed to execute steps in
their preferred order and at their own speed. This environment in combination with the
sporadic activities makes it a difficult dataset to learn for machine or deep learning models
with results of ~40% F1-Score.
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Table 1. The most relevant datasets used by the HAR community, as well as examples for datasets from uncontrolled or semi-controlled environments (with
challenges based on Table 1 from [6]). Our presented dataset Hang-Time HAR is highlighted.

Dataset Device # Subjects # Classes Domain Environment Challenges Published

HHAR [24] Smartphone 9 6 Locomotion Controlled (Lab) Multimodal, Distribution
Discrepancy 2015

RWHAR [25] Smartphone, Wearable IMUs 15 8 Locomotion Controlled (Outside) Multimodal 2016

Opportunity [26]
Wearable IMUs, Object-Attached
Sensors, Ambient Sensors 4 9 ADL, Kitchen Activities Controlled (Lab) Multimodal Composite

Activity 2010

Opportunity++ [27]
Wearable IMUs, Object Attached
Sensors, Ambient Sensors 4 18

ADL, Kitchen Activities,
Video, OpenPose tracks Controlled (Lab) Multimodal Composite

Activity 2021

PAMAP2 [28] Wearable IMUs 9 18 Locomotion, ADL Controlled (Lab, Household) Multimodal 2012

Skoda [29] Wearable IMUs 1 12
Industrial
Manufacturing

Controlled (Industrial
Manufacturing) Multimodal 2008

UCI-HAR [30] Smartphone 30 6 Locomotion Controlled (Lab) Multimodal 2013

WISDM [31] Wearable IMUs 29 6 Locomotion Controlled (Lab) Class Imbalance 2011

UTD-MHAD [18] Wearable IMUs, Video 8 27 Gestures, Sports Controlled (Lab) Multimodal 2015

Daphnet [32] Accelerometer 10 3 ADL, Locomotion Controlled (Lab) Simple 2009

DSADS [16] Wearable IMUs 8 19 Sports, ADL Controlled (Lab & Gym) Multimodal 2010

ActiveMiles [23] Smartphone 10 7 Locomotion Uncontrolled (In-The-Wild) Real-World 2016

Baños et al. [33] Wearable IMUs 17 33 Sports (Gym) Controlled (Gym) Multimodal 2012

Leisure Activities [15] Wearable IMU 6 6 ADL Uncontrolled (In-The-Wild) 1 activity per subject 2012

WetLab [34] Wearable IMU, Egocentric Video 22 9 Experiments (Wetlab) Semi-Controlled (Wetlab) Multimodal 2015

TNDA-HAR [19] Wearable IMUs 23 8 Locomotion Controlled (Lab) Multimodal 2021

CSL-SHARE [35]
Wearable IMUs, EMG,
Electrogoniometer, Microphone 20 22 Locomotion, Sports Controlled (Lab) Multimodal 2021

Hang-Time HAR Wrist-worn accelerometer 24 15 Sports (Basketball) Controlled and
uncontrolled (Gym)

Different recording
environments,
Class Imbalance

2023
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Stoeve et al. [36] took IMU-based activity recognition from the lab to a real-world
soccer scenario where passing and shooting in real soccer games are recognized.

This study did not publish the dataset publicly, however. We consider sports in
general to be a highly interesting scenario for benchmark datasets that are aimed at further
developing learning mechanisms that are also capable of detecting periodic activities, such
as sitting, standing, walking, running, short or micro-activities such as passing, or rebounding
and also complex activities such as shooting a basketball or performing a layup.

Finally, we summarize the main features of our Hang-Time HAR dataset as the
following:

1. Hang-Time HAR consists of wrist-worn inertial data from 24 participants from two
teams and from two countries with two different rule sets, performing 10 different
basketball activities.

2. Hang-Time HAR is recorded in three different types of sessions: (1) warm-up, (2) drill,
and (3) game. The drill sessions are executed in a structured way where participants
were instructed to execute single specific activities, in a predefined order. However,
the warm-up and game session followed the teams’ typical routine and are not tied to
an activity protocol and participants were allowed to play as they preferred.

3. Hang-Time HAR includes considerable variety, with both simple and periodic activi-
ties, short or micro-activities, and complex activities. Hang-Time HAR also explicitly
contains data from participants with different experience levels and following differ-
ent basketball rule sets.

4. Hang-Time HAR is labeled on four different layers: (I) coarse, (II) basketball, (III) loco-
motion, and (IV) in/out. This will allow future researchers to combine labels, such as
for example dribbling + walking, dribbling + running, or jump shots. This results in more
complex activities and it becomes more challenging for the classifier to perform well.

3. Related Work on Sports Studies

IMU-based sports activity recognition is one of the main application fields for HAR
studies, as summarized in Tables 2 and 3. It has already been proven for a variety of
different sports, such as running [37–39], ball sports [36,40–44], winter sports [45,46], sports
for the disabled [47], or fitness [48–51], that activity recognition algorithms are capable
of detecting specific activities tied to these sports based on IMU data as input. Other
studies that incorporated IMUs focus rather on the athletes’ performance [52–55] or gait
estimation [56,57] than activity recognition.

Table 2. IMU-based studies have been performed throughout many different sports in the past years,
yet few are publicly available for usage by other researchers (table partially based on [58], Table 2).

Sports Studies with Wearables

Study Sport &
(#) Activities Performed Sensors/Systems Used # Subjects Dataset Published Analysis Method

Bastiaansen et al. [37] (1) Sprinting Five IMUs and sensor
fusion algorithms 5 No Statistical Analysis

Borja Muniz-Pardos et al. [38] (1) Running Foot worn inertial sensors 8 No Statistical Analysis

Brouwer et al. [59]

(5) Swing motions
from different
sports: golf swi-
ngs, 1-handed ball
throws, tennis serve,
baseball swings.
and a variety of
trunk motions.

Two IMUs and a MoCap
system 10 No Statistical Analysis

Brunner et al. [60] (5) Swimming Wrist-worn full IMU, barometer 40 No Deep Learning (CNN)

Carey et al. [42] (1) Physical impacts
while playing rugby

head-worn accelerometer
and gyroscope (x-patch™) 8 No Statistical Analysis

Lee et al. [45] (2) Skiing turns 17 IMUs and
pressure sensors 7 No 3D Kinematic

Model Evaluation
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Table 2. Cont.

Sports Studies with Wearables

Study Sport &
(#) Activities Performed Sensors/Systems Used # Subjects Dataset Published Analysis Method

Teufl et al. [49]

(3) Bilateral squats,
single leg squats,
and counter-
movement jumps

Seven IMUs and a MoCap
system 28 No Rigid Marker Cluster,

Statistical Analysis

Wang et al. [61] (3) Racket Sports Wrist-Worn IMU 12 No Machine Learning,
(SVM, Naive Bayes)

Whiteside et al. [62] (9) Tennis strokes Wrist-Worn IMU 19 No Statistical Analysis

Ghasemzadeh and Jafari [41] (1) Baseball swing 3 IMUs
(Wrist, Shoulder, Hip) 3 No Semi Supervised

Clustering

MacDonald et al. [43] (15) Volleyball 6D IMU (Acc. & Gyr.) 13 No Statistical Analysis

Borges et al. [44] (6) Volleyball Waist worn full IMU 112 No Statistical Analysis

Dahl et al. [50]

(5) Cutting, running,
jumping, single
leg squats and
cross-over twist

8 full IMUs, 17 MoCap Cameras 49 No Statistical Analysis

Pajak et al. [48]
(4) Fitness exercises:
dips, pullups, squats,
void

3 full IMUs, Pressure Sensor,
Radio Signal - No Deep Learning (CNN)

Yu et al. [40] (1) Soccer kick 6D IMU (Acc. & Gyr.) - Yes, upon request
Attitude Estimation
with Quaternions,
Gravity Compensation

Stoeve et al. [36] (3) Soccer kick, pass,
void Shoe-worn IMU 836 No

Machine and Deep
Learning (SVM, CNN,
DeepConv-LSTM)

Bock et al. [51] (19) Fitness activities 4 Accelerometer sensors,
egocentric video footage 18 Yes

Deep Learning
(DeepConv-LSTM,
Attend-and-Discrim-
inate, ActionFormer)

Brognara et al. [52] (-) CrossFit® Full IMU at the lower back 42 Yes, upon request Statistical Analysis

Perri et al. [63] (8) Tennis strokes 1 Full IMU at the scapulae 8 Yes, upon request Statistical Analysis

Azadi et al. [46] (1) Alpine skiing 2 smartphones with IMUs
placed at the pelvis 11 No

Unsupervised Machine
Learning (Gaussian Mix-
ture Models, Kmeans)

Jean et al. [53] (-) Running foot-worn 6-axis IMU 41 No Statistical Analysis

Yang et al. [56] (-) Contact and
flight-time (Running) 2 ankle-worn 6-axis IMUs 36 Yes, upon request Statistical and

Feature Analysis

Léger et al. [64] (3) Ice Hockey 1 glove-worn IMU 10 Yes, upon request Machine Learning (kNN)

Hamidi et al. [54] (-) Swimming perfor-
mance 1 sacrum-worn IMU 15 Yes, upon request Statistical Analysis,

Self-Assessment

Müller et al. [55] (-) Beach Handball
performance

1 full IMU placed at the upper
thoracic spine 69 Yes Statistical Analysis

Patoz et al. [57] (-) Contact and
flight-time (Running) 1 sacral-mounted IMU 100 Yes, upon request Statistical Analysis

Lee et al. [65]
(4) stride, step, and
stance duration of
running gait

Sacrum worn 3D Accelerometer,
6 infrared cameras 10 No Statistical Analysis

Harding et al. [66] (-) Airtime analysis of
snowboarders One 3D gyroscope 10 No Statistical Analysis

Basketball has been studied by several works using IMU sensor data beginning in
2014. The studies presented in Table 3 focused on a wide field of applications within
basketball. Hoelzemann et al. [67] detected different dribbling styles and shooting with a
single wrist-worn full IMU. Mangiarotti et al. [68] used two IMUs worn on each wrist to
differentiate between passing, shooting, and dribbling the ball. Sviler et al. [69] focused on
locomotion activities, such as jumping, acceleration, deceleration, and change of direction.
Sangüesa et al. used IMU and RGB video data to detect complex basketball tactics. Lu
et al. [70] and Liu et al. [71,72] attached smartphones to the body and used the built-in
accelerometer to detect a variety of basketball activities. Lu et al. and Liu et al. showed
that accelerometer data alone is sufficient to classify basketball activities. Perhaps the most
comprehensive basketball activity study to date was conducted by Nguyen et al. [73]. The
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group used data from five full IMUs attached to the participants’ shoes, knees, and lower
back in order to classify frequently occurring basketball activities such as walking, running,
jogging, pivot, jumpshot, layup, sprinting, and jumping. The most relevant studies to this
work are [67,71–74]. Ref. [67] focuses exclusively on the distinction of dribbling techniques
and the recognition of the shooting motion, but it can be viewed as a feasibility study that
inspired the development of a comprehensive basketball activity dataset. Table 3 shows
that the only study that made their dataset publicly available is Trost et al. [17]. However,
downloading the dataset from the source given in the manuscript is not possible at the time
of writing this manuscript.

In comparison to our study, the majority of these studies predominantly utilize ma-
chine learning techniques or statistical analysis. The only exceptions are Eggert et al. [75]
and Bo et al. [74], both of which employ deep learning-based approaches. However, these
studies lack data with equivalent scope, complexity, and diversity. Moreover, they primarily
focus on specific aspects, as mentioned earlier, and do not incorporate game phases, which
frequently involve changing activity patterns, in their evaluation.

Table 3. IMU-based basketball activity recognition studies. Trost et al. is the only team that made
their dataset publicly available for download. However, the dataset is currently unavailable for
download. (* Not accessible from the source given by the manuscript at the time of writing).

Sensor Based Basketball Studies

Study (#) Activities Performed Sensors/Systems Used # Subjects Dataset
Published Analysis Method

Hoelzemann et al. [67] (4) different dribbling
techniques, shooting Wrist-Worn Full IMU 3 No Machine Learning

(kNN, Random Forest)

Sviler et al. [69]
(4) jumping, acceleration,
deceleration and
change of direction

Full IMU 13 No Statistical Analysis

Nguyen et al. [73]

(8) walking, running,
jogging, pivot,
jumpshot, layupshot,
sprinting, jumping

Five Full IMUs 3 No Machine Learning (SVM)

Trost et al. [17]
(7) lying, sitting, standing,
walking, running,
basketball, dancing

Two Full IMUs, 52 Yes *
Statistical Model
(Logistic Regression
Model)

Bo [74]

(5) standing, running
standing dribble,
penalty shot,
jump shot

5 IMUs (Acc. & Gyr.) 20 No Deep Learning (RNN)

Lu et al. [70]
(5) standing, bouncing ball,
passing ball, free throw,
moving with ball

3 smartphones with accelerometer 4 No
Multiple Supervised
Machine Learning
Classifier

Liu et al., 2015 [71] and 2016 [72]
(8) walk, run, jump, stand
throw ball, pass ball,
bounce ball, raise hands

2 smartphones with accelerometer 10 No
Multiple Supervised
Machine Learning
Classifier

Sangüesa et al. [76]
(5) complex basketball tactics:
(pick and roll, floppy offense
press break, post up, fast break)

IMUs and video footage 11 No Machine Learning (SVM)

Mangiarotti et al. [68] (3) passing, shooting, dribbling two wrist-worn IMUs 2 No Machine Learning
(SVM, kNN)

Staunton et al. [77] (1) jumping MARG Sensor (magnetic, angular
rate and gravity). 54 No Statistical Analysis

Eggert et al. [75] (1) jump shot foot-worn IMU 10 No Deep Learning (CNN)

Bai et al. [78] (1) basketball shots
one wristband-worn IMU,
one Android smartphone put in the
trouser pocket.

2 No
Multiple Supervised
Machine Learning
Classifier

Hasagawa et al. [47] (2) Wheelchair basketball:
push and stop wheelchair equipped with two IMUs 6 No Feature and

Statistical Analysis

Observing a basketball game and interpreting activities executed on the court is a
research topic primarily driven forward by computer vision studies. Therefore, according
to Table 4 computer vision based activity recognition datasets are already publicly available
to the community. The datasets presented in Table 4 mostly contain RGB data. The dataset
used by Hauri et al. [79] is available for download and contains, among other modalities,
1D (y-axis) accelerometer data of NBA players shooting a basketball. However, the authors



Sensors 2023, 23, 5879 9 of 32

confirmed to us that the acceleration data in their dataset were not recorded with a wearable
sensor device. Moreover, they were extrapolated from the video data by taking into account
the positional data of the players and the time stamps. The study focused on detecting
complex tactical group activities such as pick and rolls or handoffs. The studies conducted
with visual data are more comprehensive with regards to the number of classes than the
IMU-based activity studies. Gu et al. [80] classified 26 fine-grained basketball activities
into 3 broad categories. A very early study, conducted in 2008 by De Vleeschouwer
et al. [81], mixed basketball activities such as throwing, passing, or rebounding the ball,
with detecting context-based activities such as player exchange, rule violations, or fouls.
Maksai et al. [82] estimated the trajectory of a ball in different sports, including basketball.
Ramanathan et al. [83] focused on scoring activities, such as performing layups, 3- and
2-point shots, free throws, and slamdunks.

Table 4. Vision-based basketball activity recognition studies that published their dataset for download.
However, Maksai et al. and Ramanthan et al. are currently not available for download. (* Not
accessible from the source given by the manuscript at the time of writing).

Vision-Based Basketball Studies

Study Action Recognized Sensors/Systems Used Dataset Published

Hauri et al. [79] Group activities:
pick and roll, handoff

Videos and 1D-Accelerometer
(only shots, extrapolated from videos) Yes

Ma et al. [84] 12 atomic basketball actions RGB-D Video Data Yes

Shakya et al. [85]
two point, three point, mid
range shots (success and fail-
ures separately classified)

RGB Video and optical flow data Yes

Gu et al. [80]
3 broad categories:
dribbling, passing, shooting;
26 fine-grained actions

RBG Video Data Yes

Francia [86]
walk, no action, run, defense,
dribble, ball in hand, pass,
block, pick, shot

RGB Video Data Yes

Parisot et al. [87] player detection RGB Video Data Yes

De Vleeschouwer et al. [81]
Throw, Violation, Foul
Player Exchange, Pass
Rebound, Movement

7 cameras, RGB Video Data Yes, upon request

Maksai et al. [82] Trajectory estimation RGB Data of various ball sports
(basketball among others) Yes *

Ramanthan et al. [83]

layups, free throw,
3 point, 2 point shots,
slamdunk (success and
failures separately classified)

RGB Video Data Yes *

Tian et al. [88] basketball tactics detection RGB Video Data published by [89] Yes

Although a large number of activity studies explore sports data and specifically
basketball data, the number of publicly available benchmark datasets is significantly
low. A fine-grained IMU-based sports dataset that does represent one sport is not yet
publicly available.

4. Methodology

This section provides detailed information about the study parameters, the hardware
and software used to record the data, the preprocessing and labeling process, as well as
recommendations for other researchers for recording IMU data. The second part of this
section describes in detail the dataset in regard to the class characteristics.
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4.1. Study Design

This dataset contains data collected during two separate periods and following the
same study protocol. The first author supervised Study 1 at the University of Siegen,
following FIBA regulations, which did not require IRB review. The second author conducted
Study 2 at the University of Colorado Boulder, according to NBA regulations, and the study
is IRB-approved. In subject recruitment, we excluded any person with a disability impairing
their ability to play basketball and any person under the age of 18 years. Four modes of
data were collected during the study: information collected manually by researchers, online
questionnaire, smartwatch accelerometers, and video cameras in order to annotate the
accelerometer data. However, the video data contains information that could de-anonymize
our participants and is therefore not included in the dataset.

Prior to the study, participants signed a consent form that outlined the study protocol
and risks of harm, and they were informed that the questionnaire and accelerometer data
will lack any personally identifiable information and that a dataset containing these two
modes of collected data will be made publicly available. At the start of the study, partic-
ipants received one smartwatch and were assigned a unique identifier. The researchers
manually collected the unique ID and name of the participants, in order to allow them to
retroactively request for their data to be deleted prior to the release of the dataset. Partici-
pants filled out an online questionnaire collecting age, height, weight, gender, dominant
hand, and history of playing basketball. Participants were then instructed to wear the
smartwatch on their dominant hand and perform a sequence of basketball-related activities
(i.e., standing, walking, running, dribbling, shooting, layups, and a game). Please see
Appendix A Figure A1 for the study protocol. Two cameras were used to record each study,
see Figure 2, and the footage was combined for the labeling process.

The study protocol is divided into two parts. The first part is designed to collect
controlled data by having participants complete a sequence of predefined activities for
a defined period of time, while this first part is controlled, it also simulates real-world
basketball drills in practice sessions where players repeatedly practice a certain activity
(e.g., layups, shooting, dribbling, running). The second part is a basketball game between
two teams each with five players per team on the court, and extra players rotated into the
game. Video cameras were set up along the sidelines of the court in order to record each
participant’s activities for the labeling process. The differences between the two studies as
well as the specifications of the recorded videos are documented in Table 5.

Table 5. Differences between the two studies and a description of the camera recording settings and
file sizes for each study and camera employed.

Ball
Regulation

Number of
Participants

Study
Duration Video Camera Duration

(Minutes)
Resolution
(Pixels)

File
Size FPS SD Card

Capacity

Germany FIBA 13 110 GoPro Hero 4
GoPro Hero 8

110
110

1920 × 1080
1920 × 1080

20 GB
20 GB

60
60

64 GB
64 GB

USA NBA 11 76 GoPro Hero 8
Sony NEX6

76
40

2704 × 1520
1920 × 1080

26 GB
5 GB

60
60

125 GB
32 GB

We have several recommendations for the collection of similar datasets based on our
own experiences conducting the study and annotating the data. In the context of this study,
we recommend setting up two wide-angle lens cameras, e.g., GoPro, side-by-side with
each one capturing one half of the court and additionally instructing participants to wear
uniquely colored clothing to aid the labeling process. We found that the cameras have a
short battery life and it was necessary to bring extra batteries or a portable power bank
to continuously charge the camera for the duration of the study. Finally, in order to syn-
chronize the video footage with the smartwatch data, we recommend having participants
complete a synchronization gesture, such as jumping, simultaneously on video at the start
and end of the study.
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Figure 2. Our study design used 24 subjects with 13 subjects living in Germany and 11 subjects living
in the United States of America. In each study, the players simultaneously performed the drills and
game while the entire basketball court was monitored using two wide-angle cameras. After the study,
the camera footage was used for detailed annotation of all activity-relevant data.

Hardware: Each subject’s inertial data was captured by an open-source smartwatch,
which was fitted to the user by the author conducting the study to fit comfortably around
the dominant wrist. This watch was used to record 3D accelerometer data at ~50 Hz and at
a sensitivity of ±8 g, This watch was used to record 3D accelerometer data at ~50 Hz and
at a sensitivity of ±8 g, using the Bangle.js smartwatch with our custom firmware [90] The
watch firmware was programmed to record the acceleration data and display the current
time and date. It did not need pairing to other (e.g., Bluetooth) devices during the study.
The axis orientation, viewed from above, is as follows: +X-axis points at a 90° angle to the
left, +Y-axis points at a 90° angle forward and the +Z-axis points upwards at a 90° angle.

Controlling the Bangle.js Smartwatches: The Bangle.js smartwatches can be con-
trolled with a custom smartphone app, which is implemented as an open-source cross-
platform solution using Flutter [91] and is made available on the Apple AppStore, the
Google Play Store, and on Github [92]. The app communicates via Bluetooth Low Energy
with smartwatches. In order to download the data from the devices after stopping the
recordings, the smartwatches can be connected via Web-BLE with a local PC. Through a
website [93] the devices’ flash storage space can be accessed. The following Figure 3 depicts
the procedure of starting the smartwatches. The first screen of the figure shows the app
searching for nearby Bangle.js devices. After all nearby devices were found, 4 smartwatches
in total, one can either start all devices individually or press the button “Start All” to start
all visible devices simultaneously, screen (2). Both options open a dialogue, screen (3),
where the researcher can choose the sampling rate (Hz), sensitivity (g), and starting time.
Available sampling rates are 12.5, 25, 50, and 100 Hz and the sensitivity can be set to ±2,
±4, and ±8 g. The smartwatches need to be programmed to start at a preselected full hour.
If the device should start immediately it needs to be set to the current hour. After pressing
the Start button (3), the app connects to either one or all Bangle.js devices, synchronizes the
time, and programs the preselected parameters. We did not evaluate how many Bangle.js
smartwatches can be started simultaneously; however, we did not encounter any issues
while starting up the 14 devices at the same time.
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Figure 3. Our custom smartphone app was used to synchronize all smartwatches’ real-time clocks
at the beginning of each recording through Bluetooth Low Energy (BLE) serial commands and
start recording simultaneously. After the app is started, it first scans for all available Bangle.js
smartwatches. After that, the user has the option of either starting all devices simultaneously or
individually. Before the smartwatches are started, the user is asked to enter the desired parameters
(sampling rate, sensitivity, and start time). After pressing the start button, all smartwatches are started
with the desired parameters.

4.2. Obtaining Ground Truth

The raw accelerometer data is stored in CSV format. The labeling of ground truth
was performed in hindsight with the multimedia annotation tool ELAN [94], which was
originally developed as a linguistic annotation tool. The tool has the functionality to
visualize additional time-series data [95] and display both modalities together. Before the
annotation of the data, we ensured that sensor and video data are aligned with each other
by using a jumping as a synchronization gesture with a few seconds of sedentary activity
prior to and after the jump. The accelerometer data were then manually moved to the
correct position. Figure 4 shows exemplary ground truth for Locomotion and the Basketball
layer of subject 8 (with ID 05d8_eu).

Figure 4. Illustration of the multi-tier labeling approach, depicting the inertial data of subject 05d8_eu
(top), the ground truth locomotion Layer (middle), and the ground truth basketball layer (bottom).

Most of the samples are labeled as not_labeled, especially on the basketball layer, since
basketball activities tend to occur sporadically (whenever a player has the ball).

4.3. Dataset

The term Hang Time generally refers to the time a player spends in the air while
shooting or passing a ball. This term, however, has been used by sports magazines [96],
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game developers [97] or producers of basketball equipment [98] as an inspiration to name
their product. We decided to name our dataset Hang-Time HAR—which is focused on
the time-series analysis of basketball activities—due to its high memorability, and its short
and succinct form. The name represents to us the dataset’s direct relationship between
basketball, time-series data classification and therefore human activity recognition. The
name was consensually approved by the authors. Hang-Time HAR provides accelerometer
data recorded with ~50 Hz and ±8 g. Even though a full IMU has not been used, the data
provided can be specified as complex due to the given classes. Table 6 provides additional
meta-information about every participant. The same information is available in the file
meta.txt and downloadable from the dataset repository. In total, we recorded ~1:50:00 h of
13 participants from Germany and ~1:16:00 h of 11 participants from the USA.

Table 6. Meta information as given through the study questionnaire by all participants, 13 from
Germany, Europe (eu) and 11 from USA, North America (na). A total of 3 participants were female
and 21 were male. The players were between 18 and 39 years old. Through self-assessment, in which
participants were asked to evaluate their experience in basketball, 8 players responded with novice
and 16 with expert. Two people were left-handed. Additional about the anthropomorphy of our
participants are excluded due to restrictions given by the Ethical Council of our university. Note:
Subject 2dd9_na wore the smartwatch on the left wrist even though the right hand is dominant.

Germany

# 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.
ID e90f_eu b512_eu f2ad_eu 4991_eu 9bd4_eu 2dd9_eu ac59_eu 05d8_eu a0da_eu 10f0_eu 0846_eu 4d70_eu ce9d_eu

Age 25 39 20 28 19 34 29 19 20 35 18 36 25
Dom. Hand right right left right left right right right right right right right right
Height (cm) 191 167 178 188 190 196 190 178 193 172 171 188 175
Weight (kg) 85 85 67 100 80 83 83 77 87 73 60 74 73
Gender male male male male male male male male male male male male male
Experience expert expert expert expert expert expert expert expert expert expert novice expert expert

USA

# 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24
ID b512_na 9bd4_na 2dd9_na 4d70_na c6f3_na f2ad_na a0da_na ac59_na 10f0_na 0846_na ce9d_na

Age 27 26 24 26 24 25 28 28 27 30 24
Dom. Hand right right right right right right right right right right right
Height (cm) 165 178 175 183 180 170 170 173 154 165 188
Weight (kg) 68 65 84 68 83 69 73 65 49 65 73
Gender male male female male male male male male female female male
Experience expert novice novice expert novice expert novice expert novice novice novice

The study was conducted in collaboration between two laboratories from the Univer-
sity of Siegen, Germany, and the University of Colorado Boulder, United States of America.
In total 24 subjects participated in the study. Participants from Germany were mostly play-
ers from a semi-professional basketball team that participates actively in a basketball league.
Participants from the USA were mostly graduate students with mixed prior experience
in basketball. We originally included a void class for miscellaneous movements outside
of the primary labeled ones, such as drinking from a water bottle or tying shoes. These
were mostly performed during rest breaks. The samples annotated as void resulted in an
irrelevant small class, which could not be recognized by our classifier because they are most
often performed in conjunction with one of the locomotion classes. We ultimately decided
against including this void class, since it was very rare that players were not performing one
of the 10 classes of locomotion or basketball activities. However, the data that is not annotated
as one of the aforementioned classes are categorized as not_labeled. This class can be seen as
a very noisy but realistic void class that can be used by researchers whom focus on deeper
insights in the NULL-class problem defined by Bulling et al. [13] or whom would like to
evaluate deep learning architectures that are focused on the robust classification of void
data. This class mostly contains data during resting periods or transitions between sessions.
However, since the data is recorded under real-world conditions, many participants did
not sit and rest during these periods, instead, they tended to walk through the gym, shoot
the ball, or perform individual dribbling exercises. One of the players, namely 2dd9_na,
wore the smartwatch accidentally on their non-dominant hand, out of habit. We decided to
keep this participant in the dataset since this participant represents something that could
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easily happen in real-world scenarios. Therefore, we think that the participant has added
value to the dataset and can be useful for certain studies at a later date.

Preprocessing: We decided to keep the preprocessing on the raw data from the
smartwatches to a minimum, as these were already provided with a timestamp and in
the g unit. The smartwatch’s accelerometer samples’ timestamps contained slight (<2%)
deviations, so we adjusted the time-series by resampling to ensure that all data maintains
exact 50 Hz equidistant timestamps. Other common methods of preprocessing inertial data
for activity recognition, such as rescaling or normalization to improve machine learning
results, were not applied.

Labeling: The data was labeled by two experts, one from each institute, and labeled
on 4 different layers: (I) coarse, (II) basketball, (III) locomotion, and (IV) in/out. After both
experts had finished the labeling, the labels were checked again by expert 1 using visual
inspection, see Figure 4, and corrected if necessary. Using this labeling methodology, we
aimed to obtain as precise as possible annotations with human annotators, where some
degree of human error and mislabeling cannot be completely ruled out. Especially in the
game phase, activities are often performed both quickly and briefly, which can lead to
minor deviations in labels between manual annotations.

Specifically, (I) coarse separates the samples into different sessions, including (1) warmup;
(2) drills: (a) sitting, (b) standing, (c) walking, (d) running, (e) dribbling, (f) penalty_shots,
(g) two_point_shots, and (h) three_point_shots; (3) game; and (4) in/out. By keeping the informa-
tion whether a shot is either a (f) penalty_shots, (g) two_point_shots, or (h) three_point_shots
later studies can use these labels to distinguish between different shot distances. The label (3)
game indicates when a game was played. The study from Germany contains 2 game sessions
with ~10 min each and the study conducted in the USA contains one session of ~22 min.
The two layers (II) basketball and (III) locomotion contain the labels that correspond to one
of the classes shown in Table 7, as well as the label not_labeled, which is used whenever
the information of what exactly a player is doing at a specific moment, could not be seen
in the ground truth video or between sessions. The fourth layer in/out is only relevant
during the game session since this layer indicates whether a player is on the court or not.
However, this layer can be seen as additional meta-information, which can be relevant for
future researchers. It has not been used for deep learning validation, since the challenge of
classifying if someone is active or non-active seems to be trivial in this scenario.

Class Definitions: The following Table 7 contains the class descriptions and Figure 5
visualizes one example for each class.

Table 7. Detailed class description for every class included in the dataset. The dataset is multi-tier
labeled with 4 different layers (I) Coarse, (II) Locomotion, (III) Basketball, and (IV) In/Out. The
coarse layer is not listed, since it is meant to indicate to which session an activity belongs. Relevant
classes are classes 2–13. However, the classes in and out were not used in our validation.

All Layers

1. not_labeled All samples in between sessions, or if it was not possible to recognize the activity in the video (e.g., due to occlusions).

In/Out

2. In Indicates that the subject is currently actively
participating in the game. 3. Out

Indicates that the subject is currently not actively partici-
pating in the game. This class mostly included sitting
or walking.

Locomotion Basketball

4. sitting Sitting on the floor or the reserve bench. 9. dribbling Dribbling while performing one of the following locomotion
activities: (3) standing, (4) walking, (5) running.
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Table 7. Cont.

All Layers

5. standing Standing still. 10. shot A basketball shot with and without a jump. Included are
penalty shots, 2-point and 3-point shots.

6. walking Walking at the average walking speed of
a human (4–5 km/h). 11. layup A layup is a complex class that contains: grabbing the ball,

making 2 steps, jumping, and throwing the ball in the basket.

7. running

Running is a metaclass for all velocities of
running. Therefore, it contains jogging
(5–6 km/h), fast running (6 km/h < 10 km/h)
and sprinting (>10 km/h).

12. pass
Passing the ball. Included are chest passes, bounce passes,
overhead passes, one-handed push passes and so-called
baseball passes.

8. jumping A jump typically is part of a more complex
activity, such as (10), (11), or (13). 13. rebound The player jumps and catches the ball mid-air with one or

two hands.

Figure 5. Exemplar time-series data for the included activities. The examples shown for the periodic
activities sitting, standing, walking, running, and dribbling contain 1200 samples (approx. 24 s). In order
to better represent the complex activities shot and layup as well as the micro-activities pass and rebound.
Jumps are marked in classes where the activity occurs. Such short periods were summarized in the
activity jumping.

Sitting and standing mostly show sedentary acceleration patterns with sporadic move-
ments of people moving their wrists, while walking and running show the commonly
known oscillating patterns. Dribbling can vary depending on how a player is dribbling.
For example, a player can dribble with their dominant or non-dominant hand, dribble the
ball by switching hands, or do even fakes and tricks. These styles have slightly different
characteristics and can be distinguished, see [67]. However, we decided to summarize
these differences in one class.

Even when the ball is dribbled with the non-dominant hand, the data from the domi-
nant hand shows the oscillating characteristics of the dribbling movement. Jumping is an
assembled class that also includes jumps belonging to either a shot, rebound, or layup ac-
tivities. These classes share the trait that the jump—a peak on the coronal plane—is clearly
visible. However, the classes differ mainly in the sensor data prior to the peak. The shot
contains the player grabbing and lifting the ball before jumping mostly straight up to shoot
or, in the case of a penalty shot, performed in a standing position. A rebound is mainly
a clear jump upwards or in the forward direction and a layup contains the combination
of running 2 or 3 steps (depending on FIBA or NBA rules), a jump, and throwing the ball
in the basket while jumping forward. The pass is a very short activity characterized by a
forward acceleration on the sagittal plane. Figure 6 shows how the classes are distributed
over the sessions.
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Figure 6. Class distribution of the Hang-Time HAR dataset. Total number of samples per class are:
sitting : 383,622 (~2.1 h), standing: 368,189 (~2.0 h), walking: 1,885,644 (~10.5 h), running: 1,100,942
(~6.1 h), jumping: 96,857 (~0.53 h), dribbling: 878,514 (~4,8 h), shot: 149,040 (~0.82 h), layup: 62,393
(~0.34 h), pass: 86,291 (~0.47 h), and rebound: 18,886 (~0.10 h). In total: 5,030,378 labeled samples or
~27.7 h of data.

As one can see, locomotion activities such as walking and running are distributed
almost equally over the sessions. Sitting was not performed during the warm-up session
and layup is almost exclusively performed during warm-up and the game. Samples labeled
as dribbling and shot were mostly recorded during the drill sessions and, similar to layups,
performed way less in the game. Rebound is the least recorded activity. The imbalance is
caused by the realistic recording setup of the dataset and reflects the reality of a training
session including training games in basketball. The imbalance should be considered a
challenge rather than an obstacle since all data recorded in real environments show such
characteristics. Most of the datasets mentioned in Table 1 share an imbalance either with
regards to the class distribution or study participant homogeneity. Further, we believe that
future studies would benefit from (rather than negatively impacted by) class imbalance
and intersubject variability in the dataset. Even though evaluation metrics may not reach
their maximum easily, we argue that this setup is more realistic and more representative of
a recreational sport itself and will help researchers to understand open research questions
better than a fully balanced dataset.

Combining Classes: The layers provided in our dataset make it possible to extend
it with additional and more challenging classes. For example, shots can be distinguished
between penalty_shots, two_point_shots, and three_point_shots by taking into account the coarse
layer. The locomotion layer holds the information if the activity dribbling was performed
while the player was standing, walking, or running. Therefore, the class definitions in
Table 7 only contain the basic classes and can be extended individually—depending on the
requirements of one’s project.

5. Analysis

This section will provide a preliminary inspection of our dataset. The range of methods
employed here includes descriptive statistics, baseline statistical analyses, and machine
learning performance results. Our feature analysis focuses on experts vs. novices since
we believe that this feature is a strong asset of our dataset that needs to be highlighted.
Differences in the data with regard to the players’ experience are visible through features
and can be used in later research to develop systems that react to these differences, such
as supporting and accompanying a player in the further development of his/her playing
skills. If researchers would like to use the dataset as a benchmark dataset for deep learning
experiences, they can exclude one or the other group. Exemplary for the rest of the dataset,
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we included six players in our analysis, with three players from each subset, analyses of
the remaining subjects are in Appendix A, where these differences are apparent.

5.1. Feature Analysis

Our analysis focuses on the representation of intraclass variability and interclass
similarity, as well as clarifying the differences between novices and experts. Figure 7
contains the raw data of approximately 7 min of dribbling while the person stands, walks,
and runs with different velocities. The locomotion speed increases over time. Through
visual inspection, we can already clearly see that the dribbling patterns differ greatly
between novices and experts.

Figure 7. Feature analysis of the class dribbling for players 4d70_eu, 10f0_eu, and 05d8_eu (experts)
and 2dd9_na, ce9d_na, and c6f3_na (novices). The plot consists of 4 columns. (1) Raw data as
recorded during the dedicated dribbling drill (approx. 7 min of data (Germany) and 5 min of data
(USA). The X-axis is represented in red, the Y-axis in green, and the Z-axis in blue color. (2) Standard
deviation (diamond shape), median, interquartile q1 and q3 (rectangle shape) as well as upper and
lower fences. (3) Fast Four Transformation [99]. (4) Local maxima [100] (prominence = 1.4) calculated
using the magnitude of the input signal (1), every red dot indicates a peak that is interpreted as
one dribbling.

The results of the Fast Fourier Transform (FFT), visible in column (3), indicate that
expert players dribble the ball with a wider frequency spectrum than novices, caused by
variations in the dribbling style (changing hands, dribbling low/high or fast/slow, or
doing tricks). Furthermore, the expert players show a higher mean frequency as well as a
higher magnitude column (4) than novice players. Exceptions from this only occur in the
feature analysis of players b512_na and 0846_eu, see Figure A4 in Appendix A. However,
this is explainable since player b512_na mostly dribbled the ball at a walking pace (visible
in the video footage) and player 0846_eu has intermediate dribbling skills, even though the
overall skill level can be categorized as a novice. Additionally, for the features depicted
in Figure 7, we calculated the arithmetic mean of dribbles per second (AM D.) and the
Signal-to-Noise Ratio (SNR), as defined in the following equation.

SNRdb = 10 · log10

(
Psignal
Pnoise

)
(1)
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The experts have a higher rate of dribbles per second than the novices, and this shows
that experts dribble the ball more comfortably resulting in fewer ball losses and a faster
pace, shown in column (4) of Figure 7. More significance is illustrated in the SNR between
the two groups. A higher value means that more noise is present in the signal, or the ball is
dribbled in a less controlled manner, and this is also visible in the raw data of Figure 7.

The Principle Component Analysis (PCA) [101], shown in Figure 8, calculated for the
same participants shows, exemplary on the basis of the classes shot and layup, the intraclass
variability but also the interclass similarity mentioned at the beginning. The first column
contains all subjects, the following three columns contain the experts, and the last three
columns contain the novices. The PCA shows that novices follow less coherent movement
patterns. Experts, however, present more similar patterns, which differ minimally on both
component axes of the PCA.

Figure 8. Principle Component Analysis of the classes (1) shot and (2) layup. For the same subjects
mentioned in Figure 7 and Table 8. The colors represent the 6 different participants included in this
figure. 4d70_eu is represented in blue, 10f0_eu in red, 05d8_eu in green, 2dd9_na in purple, ce9d_na in
orange, and c6f3_na in turquoise.

Table 8. Arithmetic Mean of dribbles/second (AM D.) and Signal-to-Noise Ratio (SNR) are listed per
subject and separated between experts and novices.

Experts Novices

ID 10f0_eu 05d8_eu 4d70_eu 2dd_na c6f3_na ce9d_na

AM D. 1.10 1.05 1.04 1.01 1.02 1.01
SNR 3.40 2.97 3.47 5.93 8.43 7.17

The following Figures 9 and 10 show 10 examples for the same six participants used in
the figures before. The shots show participant-independent patterns that include a negative
peak on the z-axis (jump) followed by a positive peak on the y- and z-axis (shot). Such a
coherent pattern is hardly visible for the layup class.

Such perfect examples, as seen in Figure 5 are rare for the layup, especially when
the player is contested. The intensity, as well as the execution of the activity, differs a lot
depending on the situation.
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Figure 9. Ten instances of the class shot for the same subjects as mentioned in Figures 7 and 8. A
clearly visible pattern can be seen in all examples. The length of the activity typically varies between
1000 and 3000 ms with an average duration of approx. 1700 ms, depending on the subject and the
execution style. The X-axis is represented in red, the Y-axis in green, and the Z-axis in blue color.

Figure 10. Ten instances of the class layup for the same subjects as mentioned in Figures 7 and 8.
The patterns vary by subject and sometimes even differ between instances of the same subject. This
class inherits a strong intraclass and intersubject variability. The length of the activity typically
varies between 1000 and 3000 ms, with an average duration of approx. 2000 ms, depending on the
subject and the execution style. The X-axis is represented in red, the Y-axis in green, and the Z-axis in
blue color.

5.2. Deep Learning Analysis

We investigated a variety of prediction scenarios to provide a first impression of
potential test cases and benchmark scores that can be achieved using the Hang-Time HAR
dataset. As architectures for our classifiers, we chose to use both a shallow variant of the
DeepConvLSTM network [102] and Attend-and-Discriminate network [103]. Each of the
defined training scenarios employs either a Leave-One-Subject-Out (LOSO) cross-validation
or a train-test split to evaluate a network’s predictive performance. The former (LOSO)
involves each subject becoming the validation set once while all other subjects are used for
training the network, while the latter (split), as the name suggests, simply splits the data
into two parts—one used solely for training and the other used solely for testing. During
all experiments, we employ a similar hyperparameter setup as used in [102]. We further
alter the architecture suggested by Abedin et al. [103] to encompass the findings discussed
in [102], i.e., employing a one-layered recurrent part and utilizing 1024 hidden recurrent
units for both architectures. Lastly, in order to minimize the effect of statistical variance, for
each test case we calculate the average predictive performance across three runs, each time
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employing a different random seed drawn from a predefined set of three random seeds. In
order to determine a suitable sliding window size, three different window lengths, i.e., 0.5,
1, and 2 s, with an overlap of 50% were evaluated using a LOSO cross-validation on the
complete Hang-Time HAR dataset. Among the tested window lengths, the results showed
little to no difference with the standard deviation of the macro F1-score ranging only
between 0.4% (shallow DeepConvLSTM [102]) and 1.2% (Attend-and-Discriminate [103]).
Nevertheless, we determine a sliding window length of 1 s with an overlap ratio of 50% to
be most suited for the Hang-Time HAR dataset as we expect that:

1. A smaller window length would not be able to capture enough data, and thus patterns
specific to activities, which could be learned by the network.

2. A larger window length would capture too much data, increasing the risk of patterns
specific to short-lasting activities being mixed with patterns of other activities. This
would make it less likely that a network learns to attribute only relevant patterns to
short-lasting activities.

During our experiments, we are investigating how well our network generalizes in two regards:

1. Subject-independent generalization: As with almost any activity, basketball players tend
to have their own specific traits in performing each basketball-related activity. Within
these test cases, we investigate how well our network generalizes across subjects by
performing a LOSO cross-validation on the drill and warm-up data of all subjects.
During each validation step, the activities of a previously unseen subject are predicted,
and thus the experiments will determine how well our network generalizes across
subjects and whether subject-independent patterns can be learned by our architecture.

2. Session-independent generalization: As previously mentioned, data recorded during an
actual basketball game can heavily differ from "artificial" data recorded during the
drill and warm-up sessions, as subjects did not have to adhere to any (experimental)
protocol. Thus, the session-independent test cases investigate how well our network
predicts the same activities performed by already-seen subjects during an actual
game. Within these experiments, we train our network using data recorded by all
subjects during the drill and warm-up sessions and try to predict the game data of
said subjects. These type of experiments will give a sense of how well our network
is able to generalize specifically to real-world data and simulates the transition from
a controlled to an uncontrolled environment. The network learns player-specific
patterns from the warm-up and drill sessions and tries to classify the more dynamic
game subset.

In the following, the results obtained during the two test case types will be illustrated.
All results as well as the raw log files of each test case can be found on the projects’
Neptune.ai page [104]. The used architectures and the code of the performed experiments
are published in our GitHub repository [105].

Looking at the results in Figures 11 and 12 one can see that there are major differences
regarding how well our network generalized across study sessions (parts) and across
subjects. Overall one can see that using the Hang-Time HAR dataset as input both ar-
chitectures did not generalize well across sessions, i.e., from drills to games. Looking at
the subject-independent results one can see that almost all classes tend to transfer well
with only layups (<45% macro F1-score), passing (<30% macro F1-score), and rebounds
(<10% macro F1-score) as outlying activities, with the average macro F1-score above 50%
for both architectures. Contrarily, the session-independent results show a significant de-
crease in overall predictive performance by around 24% for the shallow DeepConvLSTM
and around 19% for the Attend-and-Discriminate architecture. Nevertheless, this trend
does not apply to all activities equally, with most locomotion activities (walking, running,
and sitting) not as heavily affected (<50% macro F1-score) in prediction performance as
the basketball activities (dribbling, shooting, passing, rebound, and layup) whose macro
F1-scores do not exceed 20% for both architectures. We accredit this drop in performance to
the fact that basketball games by nature have more unforeseen situations to which players
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need to adjust their movement too. In general, it is rare that players are able to perform,
e.g., an uncontested layup (e.g., certain fastbreak situations) resulting in altered feet and
arm movement in order to find the necessary space and successfully score. The influence of
a game-like situation can particularly be seen in the locomotion activity standing which
sees a major decrease when trying to be predicted in-game. Players constantly move to
defend an oncoming player of the opposing team, which makes standing in-game very
much different from standing during drills, as players are, e.g., going into a defensive
position or are keeping in contact with their assigned player on defense.
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Figure 11. Overall results of the deep learning experiments using a shallow DeepConvLSTM (blue)
and Attend-and-Discriminate architecture (orange). Both models were trained with a 1-layered
recurrent part with 1024 hidden units and a sliding window of 1 s with 50% overlap. The left plot
(a) shows the per-class LOSO results obtained from training on the drill and warm-up data. The right
plot (b) shows the per-class results predicting the game data when trained on the drill and warm-up
data. All results are averages across 3 runs using a set of 3 random seeds. Both architectures suffer a
significant loss in predictive performance when being applied to in-game data, i.e., data recorded in
an uncontrolled environment.

We identify the challenges for future research and experiments to be two-fold:

1. Results obtained during session-independent experiments show the poor general-
ization of basketball-related activities from controlled to uncontrolled environments.
This further underlines the bias introduced by researchers when relying on data
recorded in a controlled environment compared to uncontrolled environments. It
should be investigated whether it is possible to increase generalization through means
of altering the training process or employing architectures.

2. Employing the definition as defined in [106], Hang-Time HAR offers both complex
(shot, layup) and sporadic (rebound, pass) activities. As these activities are not as
reliably detected (even in controlled an environment) as other activities, it is to be
investigated whether this lies in the nature of the activities, or can be accredited to the
employed network architecture reaching its limits.
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Figure 12. Confusion matrices of a shallow DeepConvLSTM applied to the Hang-Time dataset. The
model was trained with a 1-layered recurrent part with 1024 hidden units, a sliding window of 1 s
with 50% overlap, and a fixed random seed. The left confusion matrix (a) is obtained from averaging
the per-subject LOSO results using the drill and warm-up data as input data. The right confusion
matrix (b) is obtained from training on the drill and warm-up data and validating on the game data.
One can see an increase in overall confusion when applying the architecture to in-game data, i.e.,
data recorded in an uncontrolled environment.

6. Discussion

We present our dataset Hang-Time HAR, an extensive dataset for (Basketball) Activity
Recognition. The dataset was recorded in two different sessions and continents (using two
different sport-specific rule sets) in a real-world scenario with approximately 2266 min
of real basketball training sessions and training games. The dataset we introduce offers
a large variety of activities performed by 24 subjects in both (partly) scripted (drill and
warm-up) and unscripted (game) recording sessions. Activities range from simple ones,
such as a player‘s locomotion, to complex ones, such as layups and shooting which consist
of in-activity sequences. Each basketball player was equipped with a single wrist-worn
inertial sensing smartwatch, and labeling was performed by annotating video footage of
the sessions.

The feature analysis shows that Hang-Time HAR has considerable intraclass variability
and interclass similarity as described by Bulling et al. [13]. This effect was strengthened
by the recording setup of a semi-controlled environment. From the perspective of deep
learning for human activity recognition, the dataset offers a variety of new challenges. As
evident in the results of our Deep Learning analysis, during the LOSO cross-validation the
architectures we chose reached their limits with respect to the classes rebound and layup
in both session types we evaluated, see Figures 11 and 12. To be able to recognize it in a
LOSO cross-validation, where no prior information on the subject is given to the classifier,
we need either more samples of that class, e.g., through applying techniques such as data
augmentation or a deep learning architecture that is able to handle under-represented
classes. Basketball-specific classes were predicted during the game, on average, with a 25%
F1-Score. Passes and rebounds were extremely difficult for the classifier to detect since their
execution time is often under 1 s. Furthermore, the most significant part of the activity
rebound is the jump—which is a sub-activity that is shared with other classes such as shot or
layup. These activities that were predicted poorly when missing subject-specific training
data also correspond to the fewest samples in the dataset. Future work could involve
testing techniques such as artificially increasing the under-represented classes through data
augmentation or a more suitable deep learning architecture for handling class imbalances.

According to Bock et al. [106] we distinguish between sporadic, simple/periodical,
transitional, and complex activities. However, datasets shown in Table 1 mostly focus on
locomotion activities and activities of daily living. Only a few, such as [26,27,35,51], include
sporadic, transition or complex activities, and many datasets that do include sports [16,33]
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aggregate an entire sport into a single activity. Published sports studies tend to not release
their datasets publicly or only upon request—with Trost et al. [17] and Bock et al. [51]
as the only exceptions, as shown in Tables 2 and 3. As a result, sports-specific IMU-based
datasets available to the public that reflect the complexity and characteristics of a specific
sport are very limited. Due to the nature of the sport of basketball, our dataset contains
classes where the characteristics mentioned by Bock et al. apply. Rebound, pass, and jump can
be considered as sporadic classes. The locomotion classes—sitting, standing, walking, and
running are periodic classes, shot and layup contain complex, interrelated activities. During
the warm-up and game, all activities were situation-based and therefore the dataset contains
natural and fluently performed transitions between classes as well as overlapping activities.

By using the different semantic layers of the dataset—coarse, basketball, locomotion, and
in/out—researchers are able to focus on different aspects of activity recognition by studying
the different semantic levels either in isolation or in combination and incorporate them
in their research appropriately. In particular, the combination of various semantic levels
offers researchers the possibility to design and develop game analysis algorithms based
on IMU signals. Such algorithms could either analyze the players’ performance with or
without focusing on specific activities or could analyze the game itself in a holistic approach.
Wrist-worn smartwatches—as used in this study—are not allowed to be worn during an
official basketball game, since they bear the risk to harm the player or other players on the
field. However, we believe that it can be replaced in future studies, e.g., by sweatbands
that incorporate IMU sensors. Such a device could come in a similar form as those in [107]
or [78].

Apart from providing a benchmark dataset for future machine and deep learning
studies, we believe that our dataset has cross-domain application purposes that can help
to solve open research questions such as activity recognition of complex classes in real-
world scenarios, including the development of preprocessing or postprocessing algorithms
for real-world data as well as designing neural network architectures for such scenarios.
In particular, the game data introduces a completely new scenario for human activity
recognition in which activities overlap each other and are performed with a higher pace
and altering patterns, due to the ball possession and the psychological pressure during
a game situation. Such semantic learning can become another important sub-field for
HAR in the near future, as demonstrated by the recently published architecture SemNet by
Venkatachalam et al. [108].

It is known that transfer learning for HAR does not perform equally well as it does
for vision data. Pretraining and transferring a neural network do have a positive effect
on the classifiers’ capabilities as well as the training time [109]. Our dataset can help
explain these phenomena since the locomotion layer is class-wise compatible with many
other datasets shown in Table 1 and should be therefore transferable. However, due to
the recording environment and activity domain, the classes are expected to differ from
similar classes published by datasets shown in this table. Further transfer learning studies
that test the effectiveness of pretraining a neural network model with regard to several
domain-specific datasets can be of interest to the activity recognition community. We think
that pretraining a neural network on a sports dataset and transferring the model to another
sport can have a higher positive impact on the classifier than pretraining it on a non-domain
dataset. However, this is speculative at this point and needs to be investigated by future
studies. The different skill levels of our participants shall not be seen as a disadvantage, but
rather as a unique feature that opens up challenges and opportunities for not yet addressed
research questions. The distinction between the two levels of skills can help understand the
real effect of noisy real-world performed instances of activities on a trained classifier. As
Section 5.1 describes, we were able to identify differences in the patterns between novices
and experts due to unclean performed activities, such as shooting the ball with both hands
or dribbling the ball with less control than experienced players. Including or excluding one
or the other will have an effect on the classifier. We think that these effects are valuable
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and should be investigated as part of a larger and more complex study in the context of
classifier poisoning, transfer learning, or research problems with regard to data labeling.

An IMU-based approach has the advantage over vision-based approaches since wear-
ables (e.g., smart watches) are low-cost, widely available, and quickly deployable to players
on every court (indoor and outdoor). Vision-based approaches require a more complex
tech build, which is cost- and labor-intensive to set up and configure. Furthermore, in
future works, a simple model can be trained and deployed on a wearable device in order to
classify motions through IMU data in real-time and on-device. Recent advances, such as the
TinyHAR [110], are capable of detecting human activities with fewer trainable parameters
and are therefore power-efficient enough to be deployable on wearable devices, such as
the Bangle.js smartwatch (the Bangle.js comes with TensorFlow Lite preinstalled on the
microcontroller). We, therefore, expect that our benchmark dataset will have a significant
impact on activity recognition research in itself, but also encourage more follow-up work
in the methodologies for designing, recording, and annotating such datasets. We argue
that the sports domain, in general, offers researchers a recording environment that can
range from a controlled to an uncontrolled setting and with the advantage that data can be
labeled retrospectively using video footage.

The players’ meta information can be used to gain deeper insights into how a person’s
build and sports experience affects the execution style of an activity. Even though the
metadata contains basic information about the players’ prior basketball experience, it
does not claim to evaluate the playing skills of individual players. The video footage
might be used to provide such annotations to be added as extra annotation layers. In
future work, we would like to add another layer to the game sessions called def/off,
which indicates whether a player is currently playing defense or offense, respectively.
This information is useful with regard to a player’s locomotion since the defense position
is usually played in an upright position with hands raised and knees slightly bent, see
Figure 1. Furthermore, since this paper focuses on feature analysis and deep learning
driven classification methods, medical statistics such as a Bland–Altman analysis [111] and
biomedical derived studies [65,112,113], fall out of our scope of study but could supplement
this paper in future works.

Besides the use case of basketball activity recognition, we expect that certain activities
are generalizable across different sports. Periods in which a player did run without
dribbling (the periods can be filtered by taking into account the different semantic levels
of annotations) can be transferred to sports such as handball, indoor soccer, futsal, or in
general indoor sports that share similar field size and have periods of players running
without a ball. The dribbling movement seems to be transferable between basketball and
handball. However, we expect that the transferability will have its limitations. For example,
the class jumping will have different characteristics in volleyball compared with a jump in
basketball, since the game volleyball itself is more focused on the vertical space and has
different patterns depending on what action the players perform. Volleyball has basically
six different skills that players perform during a game, which are: serve, pass, set, attack,
block, and dig. All of them, except two special variants of serve and pass (float serve and
forearm pass) involve jumping. Hypothetically, if a wrist-worn sensor-based dataset with
volleyball activities would be published, it would be interesting to explore whether the
class jumping would be transferable.

7. Conclusions

During this study, we have developed a basketball activity dataset that brings a variety
of unique features with it and is, to the best of our knowledge, the only sensor-based and
publicly-available activity recognition dataset that focuses on fine-grained team sports
activities. The dataset introduces data from wrist-worn inertial sensors of 24 players from
two teams and recorded in two different continents where slightly different rule sets are
applied. The participants perform ten different basketball activities that are grouped into
four different semantic levels. The dataset contains warm-up, drills, and game phases.
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Typical routines were followed during the drills but not during the warm-up and game,
where players were allowed to play as they preferred. Therefore, this dataset contains
data from controlled as well as uncontrolled environments which can be filtered as needed
by researchers. The different semantic levels of the annotations make it not only possible
to focus on general locomotion or specific basketball activities, but also to create more
complex classes as mentioned before. The two levels of skills, novice, and expert, inherit a
strong intraclass and intersubject signal-variability which has already been mentioned by
Bulling et al. [13] in 2014 and is still an ongoing research challenge in real-world scenarios.
Therefore, we argue that this feature is directly relevant to real-world activities of any
domain and can be used to investigate these problems further. As aforementioned, the class
not_labeled contains data that corresponds to NULL activities as well as activities that are not
part of the dataset. As such, this class represents a very realistic and naturally-designed void
class which can be of interest to studies that focus on investigating the NULL-class problem.
The results of our deep learning analysis show that current architectures are not capable
of detecting complex classes. In order to overcome this obstacle, further research on data
preprocessing and architectural neural network design is needed. This problem becomes
more challenging if the data is recorded in a real-world and uncontrolled environment.

Given the uniqueness as a fine-grained sports dataset, the class variability, the high
number of study participants and therefore resulting size of the dataset, and the compre-
hensive coverage of rule-set-varying characteristics of the sport of basketball, we firmly
believe that this dataset will be suitable for the evaluation of machine learning and deep
learning algorithms, network architectures, and previously mentioned problems and will
establish itself as a benchmark dataset for the human activity recognition community across
application domains.
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Appendix A

In order to make this study easily reproducible, we would like to add the study
protocol as seen in Figure A1 to the Appendix A.

Figure A1. Hang-Time HAR study protocol as executed at both locations. The German recording is
~110 min and the American recording ~76 min long.

Appendix A.1. Feature Analysis

The following Figures A2–A4 complement Section 5.1 Feature Analysis and include
the raw 3D accelerometer signal, mean and standard deviation, FFT, and magnitude and
the number of dribbling occurrences of all other study participants during the dribbling
exercise, whose data were not shown in the main manuscript.

https://app.neptune.ai/o/wasedo/org/hangtime
https://app.neptune.ai/o/wasedo/org/hangtime
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Figure A2. Feature analysis of the class dribbling for players 9bd4_eu, 2dd9_eu, b512_na, and
4d70_na (experts) and 0846_na and 0846_eu (novices). The X-axis is represented in red, the Y-axis in
green, and the Z-axis in blue color.

Figure A3. Feature analysis of the class dribbling for players e90f_eu, b512_eu, and 4991_eu (experts)
and 9bd4_na, a0da_na, and 10f0_na (novices). Note: Player b512_eu did not follow the given
instructions for the dribbling-exercise at every time. Therefore, the FFT shows a wider range of
different frequencies. The X-axis is represented in red, the Y-axis in green, and the Z-axis in blue color.
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Figure A4. Feature analysis of the class dribbling for players ac59_eu, a0da_eu, f2ad_eu, ce9d_eu,
f2ad_na, and ac59_na (experts). The X-axis is represented in red, the Y-axis in green, and the Z-axis in
blue color.
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