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Data quality evaluation in wearable 
monitoring
Sebastian Böttcher 1,2,8*, Solveig Vieluf 3,8, Elisa Bruno 4, Boney Joseph 5,  
Nino Epitashvili 1, Andrea Biondi 4, Nicolas Zabler 1, Martin Glasstetter 1,  
Matthias Dümpelmann 1,6, Kristof Van Laerhoven 2, Mona Nasseri 5,7, 
Benjamin H. Brinkman 5, Mark P. Richardson 4, Andreas Schulze‑Bonhage 1,9 & 
Tobias Loddenkemper 3,9

Wearable recordings of neurophysiological signals captured from the wrist offer enormous potential 
for seizure monitoring. Yet, data quality remains one of the most challenging factors that impact data 
reliability. We suggest a combined data quality assessment tool for the evaluation of multimodal 
wearable data. We analyzed data from patients with epilepsy from four epilepsy centers. Patients 
wore wristbands recording accelerometry, electrodermal activity, blood volume pulse, and skin 
temperature. We calculated data completeness and assessed the time the device was worn (on‑body), 
and modality‑specific signal quality scores. We included 37,166 h from 632 patients in the inpatient 
and 90,776 h from 39 patients in the outpatient setting. All modalities were affected by artifacts. Data 
loss was higher when using data streaming (up to 49% among inpatient cohorts, averaged across 
respective recordings) as compared to onboard device recording and storage (up to 9%). On‑body 
scores, estimating the percentage of time a device was worn on the body, were consistently high 
across cohorts (more than 80%). Signal quality of some modalities, based on established indices, was 
higher at night than during the day. A uniformly reported data quality and multimodal signal quality 
index is feasible, makes study results more comparable, and contributes to the development of 
devices and evaluation routines necessary for seizure monitoring.

Ambulatory seizure monitoring using wearables is now within  reach1–7, but continuous data collection in out-
patient, real-life situations and data analysis in real-time bear multiple challenges before this can be effectively 
implemented. In particular, established tools on how to determine the data quality of wearable signals as a basis 
for data selection are currently missing.

The quality of the raw recorded data from wearables is a frequently underreported aspect in clinical studies 
employing these wearables, especially in quantitative terms. Furthermore, the quality of data can be expressed 
in many different ways, and data quality measures may also depend on the aims of the related analysis and 
 project8–13. Additionally, data quality is decisive for data accuracy and  reliability14–16. Seizure monitoring, com-
pared to many other clinical applications, requires a high temporal resolution, as seizures can be as short as a few 
 seconds17–19. In this context, knowledge of artifacts and tools to assess data quality and generate data reliability 
ratings are crucial for subsequent analysis and consequently outcome reliability. Artifacts can occur specific to 
a single modality or across multiple different modalities, such that the separate and simultaneous consideration 
of the different modalities may contribute to the assessment of data quality.

Our overarching goal was to assess data quality in wearables, using the Empatica E4 in the setting of epi-
lepsy monitoring as a specific example. Our main hypothesis was that signal quality affects the recording of 
neurophysiological modalities’ activity from the wrist, and in case of major disruptions may influence overall 
recording quality. Having a baseline comparison between data sets of different sites and in different settings may 
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considerably improve the interpretability of results in other studies using similar devices. We aimed to describe 
and identify common artifacts that impair recording quality. Additionally, we aimed to develop and evaluate a 
tool for data quality processing in wearables and implement this tool at four epilepsy centers. Here, we specifi-
cally define the term data quality as the overarching description of metrics used to quantitatively determine the 
goodness of data in terms of data completeness (percentage of recorded vs. expected samples, i.e., the device 
was off or not recording for some reason), on-body score (percentage of time estimated as worn on the body, as 
opposed to recording while placed elsewhere), as well as individual modality-specific scoring. These monomodal 
signal metrics are in turn referred to as signal quality throughout.

Methods
Exemplary data and signal artifact overview. As a first step in creating a wearable data quality assessment 
tool, we purposefully recorded data from two healthy and consenting volunteers. The first recording consisted of mul-
tiple 30-s long periods testing different external artifact sources. The intent was to create a small reference data set that 
we can use to comprehensively visualize artifacts depending on their sources and validate our data quality measures. 
We recorded sections with the device in its normal state at rest, during random motion, and during repetitive wrist 
rotation and translation. Furthermore, we tested the device in several simulated real-life scenarios, including partially 
or completely off the body and with light shining directly on it. In a second test recording, we collected data during a 
multi-hour period of typical daily living. With this recording, we were able to validate the data quality measures in an 
at-home context. We also used this recording to visualize inherent changes in data quality over a representative day, like 
changes between wakefulness and sleep. Both data sets helped in designing and fine-tuning the on-body scoring and 
signal quality metrics, and were subsequently visualized with these scores highlighted.

Overview of inpatient data collection procedures. Additionally, we collected wearable data through inde-
pendent protocols at four international epilepsy centers: Boston Children’s Hospital (BCH), King’s College London 
(KCL), Mayo Clinic Rochester (MCR), and Medical Center University of Freiburg (Universitätsklinikum Freiburg, 
UKF). Since data were collected independently, there were variations in our patient enrollment and data collection 
procedures between our cohorts. For this study, assessing data quality in a variety of settings and across centers, we 
provide a brief overview of center-specific data collection processes and common data aspects applicable to this article 
for inpatient (Table 1) and outpatient (Table 2) data sets. For additional in-depth information on these recording proce-
dures with wearable devices beyond this outline, please also refer to previous  publications20–23.

We enrolled patients at all centers within prospective cohort studies in the inpatient setting, and at three centers in the 
outpatient setting. All inpatients underwent clinically indicated video-electroencephalography (video-EEG) monitoring 
in the epilepsy monitoring unit. All enrolled patients wore an E4 biosensor (Empatica, Milan, Italy).

Written Informed Consent was obtained from all patients or their legal guardians. The study at BCH was 
approved by the Boston Children’s Hospital Institutional Review Board under ID number IRB-P00001945. The 
studies at KCL were approved by the London Fulham Research Ethics Committee under ID numbers 16/LO/2209 
(inpatient) and 19/LO/1884 (outpatient). The studies at MCR were approved by the Mayo Clinic Institutional 
Review Board under ID number 18-008357 (inpatient and outpatient). The studies at UKF were approved by the 
Ethics Committee at the University of Freiburg under ID numbers 538/16 (inpatient) and 605/19 (outpatient). 
All research was performed in accordance with the relevant guidelines and regulations.

Overview of outpatient data collection procedures. KCL, MCR, and UKF also conducted ambula-
tory studies in addition to the in-hospital ones, which have slightly diverging study procedures to account for the 
uncontrolled and ultra-long-term recordings (Table 2).

Table 1.  Overview of inpatient EMU cohorts and recruitment. EC Ethics Committee, IRB Institutional Review 
Board, LTM long-time monitoring, EMU epilepsy monitoring unit.

BCH KCL MCR UKF

Study Detect, predict and prevent seizures RADAR-CNS MySeizureGauge RADAR-CNS

EC/IRB approval IRB-P00001945 16/LO/2209 18-008357 538/16

Enrollment period Feb. 2015–Feb. 2021 Jun. 2017–Aug. 2019 Nov. 2018–Dec. 2019 Jul. 2017–Mar. 2020

# of patients 415 29 20 172

Recruitment age range 0–29 18–80 3–70 7–80

Actual age range (median, 95% CI) 9.35 [0.8, 20.7] 38.0 [20.4, 63.8] 21.5 [11.1, 54.9] 30.0 [14.7, 64.0]

Sex (% female) 49.4% 48.3% 30.0% 47.1%

Exclusion

Sensitive skin or history of skin 
condition
Allergic to rubber or materials like 
rubber
Warning of severe aggressive 
behavior
Sensory disorders or sensitivity to 
objects touching the skin
Electrical implants, such as pacemak-
ers or VNS
Acutely ill or in distress

Established diagnosis of psychogenic 
non-epileptic attacks as the only 
seizure type
Frequent vigorous involuntary move-
ments or frequent parasomnias with 
major motor components
Inability to comply with the trial 
procedure, such as cognitive or 
behavioral problems

Cognitive or psychiatric conditions 
render patients unable to cooperate 
with data collection, or manage and 
recharge devices
Presence of open or healing wounds 
near monitoring sites

Established diagnosis of psychogenic 
non-epileptic attacks as the only 
seizure type
Frequent vigorous involuntary move-
ments or frequent parasomnias with 
major motor components
Inability to comply with the trial 
procedure, such as cognitive or 
behavioral problems

Wearable placement Wrist/ankle Wrist Wrist Wrist

Recording mode Device Streaming Device Streaming
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Sensor and recorded signals. The Empatica E4 (Empatica Inc, Boston, MA, USA) is a research-grade 
wearable device capable of recording accelerometry (ACC), electrodermal activity (EDA), photoplethysmogra-
phy (PPG), and skin temperature (TEMP)  signals24. It was chosen over other consumer-grade wearable devices 
and fitness trackers because it is specifically rated for epilepsy monitoring, and has been successfully used in 
other epilepsy-focused studies and beyond. Further, the E4 provides raw data from multiple biosignal sensors at 
sample rates meaningful for seizure detection. The device has a Conformité Européenne (CE) class 2a certifica-
tion as a medical device. It can be worn around the wrist or ankle, and can record data either locally to the device 
or stream it directly via Bluetooth, to a smartphone app for example. In the case of local data recording, the data 
must then be downloaded via a computer and USB cable once the recording is done or the internal memory 
of the device is full. The battery life of the device ranges from 24 h (streaming mode) to 48 h (device memory 
mode). Technical specifications of the Empatica E4 wearable device are listed in Table 3.

Photoplethysmography (PPG) is an optical measurement method to determine changes in volume in the 
blood flow of a specific body part (blood volume pulse, BVP). The shape of a clean PPG signal is closely related 
to the blood pulse wave of the human  body25 (see Fig. 2a, BVP zoomed during rest condition). The heart rate is 
thereby directly derivable from the peak to peak intervals between single systolic peaks. The raw output signal 
of a PPG sensor is a function of the amount of reflected light falling into the photoelectric sensor.

Temperature (TEMP) is recorded from the skin and does not reflect the core body temperature. The sensor 
can thus also capture qualitative changes induced by ambient temperature.

Sweat production changes the electric properties of the skin which can be captured by electrodermal activity 
(EDA) recordings. Two components that contribute to measurable changes in EDA have been described. The 
fast galvanic skin responses, also referred to as phasic responses, act in the order of 0.5 to 5 s, whereas the tonic 
component, which expresses in level changes, acts in the order of  minutes26,27.

Recordings and device settings. We recorded data at BCH and MCR in device memory mode and trans-
ferred it from the device after the recording period. The data was uploaded from the device to the Empatica 
cloud and the files were downloaded for offline analysis. Data was manually synchronized to the local video-EEG 

Table 2.  Overview of outpatient ambulatory cohorts and recruitment. EC Ethics Committee, IRB Institutional 
Review Board.

KCL MCR UKF

Study RADAR-CNS MySeizureGauge RADAR-CNS

EC/IRB approval 19/LO/1884 18-008357 605/19

Enrollment period Feb. 2021–Dec. 2021 Dec. 2019–Feb. 2022 Jan. 2021–Nov. 2021

Follow up Up to 6 months Up to 12 months Up to 6 months

# of patients 15 14 12

Recruitment age range 18–70 3–70 18–70

Actual age range (median, 95% CI) 36.0 [33.6, 45.6] 39.5 [30.7, 44.2] 29.5 [27.5, 42.3]

Sex (% female) 40.0% 64.3% 50.0%

Exclusion

Established diagnosis of psychogenic non-
epileptic attacks as the only seizure type
Frequent vigorous involuntary movements 
or frequent parasomnias with major motor 
components
Inability to comply with the trial procedure, 
such as cognitive or behavioral problems
Unwillingness to use an Android smartphone

Cognitive or psychiatric conditions render 
patients unable to cooperate with data collec-
tion, or manage and recharge devices
Presence of open or healing wounds near 
monitoring sites

Established diagnosis of psychogenic non-
epileptic attacks as the only seizure type
Frequent vigorous involuntary movements 
or frequent parasomnias with major motor 
components
Inability to comply with the trial procedure, 
such as cognitive or behavioral problems
Unwillingness to use an Android smartphone

Wearable placement Wrist Wrist Wrist

Recording mode Streaming Device Streaming

Table 3.  Overview of technical specifications of the Empatica E4 device.

Empatica E4

Manufacturer Empatica Inc, Boston, MA, USA

Certification CE class IIa

Body position Wrist, ankle

Biosignals ACC, EDA, PPG, TEMP

Sampling rates 32 Hz, 4 Hz, 64 Hz, 4 Hz

ACC range  ± 2 g

Battery life 24-48 h

Recording mode Device, streaming
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system. Recordings included here were filtered by duration. We included only those with at least 1 h of data for 
the inpatient cohorts and 24 h of data for the outpatient cohorts.

At KCL and UKF the device was regularly swapped with a fully charged one twice per day and was running 
in streaming mode for the entire duration of the recording, connected to a base device with Android OS and a 
recording app independent of the device  manufacturer28. Raw data and timestamps of the wearable device and 
the Android device were stored for later analysis. For the in-hospital study, wearable data was synchronized with 
the video-EEG system and stored on-premises. For the ambulatory study, data was automatically transferred over 
the internet to a remote server, and regular data completeness reports were generated to monitor for data loss.

Data quality metrics toolkit. Data completeness assessment. We gauged the functionality of the device 
and the compliance of study participants by calculating data completeness scores. Here, data completeness and 
its inverse data loss are strictly defined as the presence and absence of data samples, e.g., due to the device having 
been turned off or otherwise not recording during the enrollment period of a subject, regardless of the quality 
of the data which is assessed in the other metrics. To this end, we computed the total duration of the data set 
from the number of recorded samples and the recording sample rate. To obtain the completeness scores, we then 
calculated the ratio of recorded duration and expected duration, i.e., the time difference between the first and last 
sample. Figure 1 gives a simplified overview of the complete data quality analysis pipeline. To account for minor 
differences in relative numbers of recorded samples per modality, we used the maximum over all modalities for 
the recording duration and the average for the completeness score. Thus, the completeness (arb. unit) and dura-
tion (seconds) of the data sets were calculated based on the following equations:

whereby Nrec is the number of recorded samples per modality, Fs is the sample rate per modality, and tstart and 
tend are the first and last data samples in a modality recording, respectively.

Device on‑body check. As the device may not always be on the body, we developed an on-body assessment met-
ric estimating the percentage of time the device was actually worn properly on the body, as opposed to recording 
while placed elsewhere. This metric does not include deficits due to data loss, which are already covered in the 
data completeness score. To achieve this, a combination of metrics can be analyzed from available biosignal 
modalities:

ACC . Assuming that the subject did not wear the device, the level of activity in a certain window can be thres-
holded, and if it is below a certain level of activity for a specific percentage of the data points within the window, 
the on-body status for that window is 0, otherwise it is 1. Here, we set this value as 0.2 of the 10-s moving stand-
ard  deviation29. The level of activity was calculated as the moving standard deviation in a 10-s window of the 
per-sample sum over the three ACC axes.

EDA. The EDA signal falls to a zero value once the electrodes are not in contact with the skin anymore. The 
raw signal can simply be thresholded over a window, and if it is below some level of activity for a certain percent-

Completeness = mean

(

Nrec

Fs · (tend − tstart)

)

,

Duration = max

(

Nrec

Fs

)

,

Figure 1.  Data quality assessment pipeline. The amount of data referenced in each step decreases from left to 
right, that is, the data completeness score is relative to the whole recording period, whereas the individual signal 
quality scores are relative to the amount of data that was estimated as on-body.
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age of the data points in the window, the on-body status for that window is 0, otherwise, it is 1. Here, we set this 
threshold value as 0.05 μS9,30.

TEMP. The temperature values while the device is worn should fall within some reasonable values for skin or 
body temperature. Thus, if the temperature falls outside of this range for a certain percentage of the data points 
in the window, the on-body status for that window is 0, otherwise, it is 1. Here, we set this temperature range 
between 25 and 40 °C12,31.

On-body metric calculation. The BVP modality was not used in the on-body assessment because its signal is 
heavily influenced by external light and thus has a random and undefined range and shape during off-body seg-
ments, depending on factors of the incoming light like intensity or color. We set the window length over which 
the on-body status is evaluated to 1 min. The minimum percentage of time points per window needed within 
the respective on-body ranges was 1%. The three scores can be used independently or in combination, depend-
ing on the desired sensitivity of the check. Thus, each 1-min window will have a single score, 0 or 1, to denote 
whether the device is deemed off-body or on-body during that window, respectively. For the results presented 
here, we set a threshold of at least one modality showing as on-body, for the entire segment to be considered 
on-body. The remaining signal quality assessment described below is performed on segments of the data where 
the device was on-body.

Signal quality assessment and scoring. We screened all data recorded from the four inpatient and three outpa-
tient cohorts with established quality metrics. For ACC the on-body score serves as a quality indicator and we 
did not calculate additional separate data quality scores for the ACC signal. We developed modality-specific 
quality metrics for TEMP, EDA, and BVP. For these signals, we determined signal quality checks and scored per 
1-min data interval to calculate the ratio of intervals that passed the quality check, estimating the overall data 
quality.

The signal quality scoring for both electrodermal activity and temperature was very similar, due to the sources 
and sensors being closely related, due to calculations based on range thresholds. For EDA, we set the range of 
limited signal quality below a signal amplitude of 0.05 μS9,30,32. Specifically, this value delimits zero lines, i.e., loss 
of contact, from actual data values. For the TEMP signal, we set the range of valid values from 25 to 40 °C12,31. 
As the temperature value represents at most the skin temperature rather than the body temperature, a slightly 
lower band of reasonable temperatures than might be expected was chosen to demarcate meaningful values.

The rate of amplitude change (RAC) here is calculated as the ratio of the difference between the highest and 
lowest value in the window, and either the maximum or minimum value, whichever comes first. In addition to the 
threshold checks, the RAC was calculated in two-second windows for the respective signals,  independently9,32. As 
both the EDA and TEMP signals usually should not contain high-frequency changes in their normal characteris-
tics (even including phasic EDA events), the RAC was thus thresholded to be below a factor of 0.2 for the signal 
to be considered  valuable9,32. That is, if the signal showed a > 20% increase or decrease within a 2-s window, that 
window was considered of bad quality. We then combined the results from both the thresholding and the RAC 
method by logical conjunction, such that both tests needed to pass for a sample to be counted as good quality.

For the BVP signal, we utilized spectral entropy to assess the signal quality. A clean BVP signal from the 
Empatica E4 without noise from motion artifacts has a smooth quasi-periodic signature, which can be sepa-
rated from random noise or, more importantly, from motion artifacts by analyzing the entropy of the signal 
spectrum. We calculated this index in 4-s windows, with overlap and linear interpolation, and for a frequency 
band of 0.1 to 5  Hz8,9,23,33. The metric values range between 0 for a signal with a single spectral component, that 
is, a perfectly periodic signal, and 1 for a signal with a constant spectrum, that is, perfectly random noise. We 
empirically determined the threshold above which the raw BVP input signal would be considered of poor qual-
ity as 0.89 for this study. Like for the EDA and TEMP signals, this thus gives a binary quality score for each data 
sample of the BVP signal.

To generate more meaningful signal quality results and to improve the feasibility of plotting results, each 
signal quality index result was further processed by averaging over a 60-s window, providing an individual 
score for each of the modalities for each minute of data in the range of 0 to 1, with 1 denoting the best possible 
signal quality. We then averaged scores for the entire data set of a single participant, and subsequently for all 
participants in a cohort.

To analyze differences concerning specific characteristics like recording location and time of day, we imple-
mented filters to divide the data sets into distinct groups. For the BCH data set, every recording had a specific 
location attribute, either ‘wrist’ or ‘ankle’. To analyze the effect of recording location, the score aggregation was 
done on each of these groups separately. Furthermore, to examine signal quality changes during day- and night-
time, we filtered the minute-wise scores by their timestamps. Scores between 8 am and 8 pm were grouped as 
daytime scores, and nighttime scores between 8 pm and 8 am. Thereby we also took into account the four different 
time zones where the centers were located.

Statistical analysis. To evaluate differences in data and signal quality scores for their statistical significance 
we use the two-tailed two-sample t-test statistic and report the t-value, the degrees of freedom, and the p-value 
in Supplement 1. All computations of data and signal quality analysis as well as the statistical analysis of the 
results were done using MATLAB R2022a (MathWorks, Natick, MA, USA).
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Results
Characteristics of typical artifacts in wearable data. Typical artifacts in wearable data of the Empat-
ica E4 sensor, recording accelerometry (ACC), electrodermal activity (EDA), blood volume pulse (BVP), and 
skin temperature (TEMP), are depicted in Fig. 2. We selected seven frequently occurring artifacts that affect the 
signal quality and the information content of the signal differently and illustrated them in comparison to a rest-
ing measurement. The effect of artifacts on the signals ranges from no meaningful information being recorded 
when the wristband is not on the patient to differential and minor effects on data completeness and consistency.

Visual analysis of E4 data recorded during a typical long-term period of daily living permits distinguishing 
intervals of wakefulness and sleep based on the raw ACC and BVP data and the BVP signal quality scores, based 
on overall less movement and variability during sleep. Furthermore, off-body time periods are characterized by 
a temperature drop in TEMP, random noise or regular oscillations in BVP, and a low amplitude in ACC variance 
and EDA (Fig. 3).

Patient cohorts. We included 37,166 h from 632 patients recorded in the inpatient setting and 90,776 h 
from 39 patients recorded in the outpatient setting. See the “Methods” section for more details on the four cent-
ers where data was recorded, and the respective cohorts. In the Boston Children’s Hospital (BCH) inpatient data-
set, for some patients, multiple recordings were available, including recordings during multiple admissions and 
parallel recordings, for example, with one E4 on a wrist and one on an ankle. For children with small wrists the 
ankle placement is an alternative. Else, the placement was determined based on the tolerability of the patient and 
in consultation with the care team. Thus, a total of 832 recordings were obtained from 415 individual patients. 
In the ambulatory datasets from the King’s College London (KCL) and Medical Center University of Freiburg 

Figure 2.  Visualization of typical artifacts in E4 data, with on-body and signal quality scores marked. Plots 
from top to bottom: BVP detail, ACC (x, y, z), BVP, EDA, TEMP. Off-body periods are highlighted in gray. 
Periods of low EDA, BVP, and TEMP signal quality scores are highlighted in red (the lighter the color the better 
the quality, no color = 100% quality). (a) Reference recording during rest, blood pulse wave without artifacts, no 
motion, baseline EDA and TEMP. (b) Wristband not on the person, BVP shows a noise-like pattern, no motion 
is recorded, and EDA and TEMP drop to 0 or room temperature, respectively. Note, that TEMP changes might 
show a delay. (c) Device body is not on the wrist, BVP cannot be recorded well as the sensor loses skin contact. 
(d) Wristband is not on the wrist, the EDA drops to 0 as the integrated sensor electrodes lose contact. (e) 
External light shining on the device and into the sensor can greatly affect the photosensor’s (BVP) recordings. (f) 
Random movements, (g) wrist rotation, and (h) wrist translation (e.g., moving up and down) disrupt BVP, ACC, 
and EDA signals, causing rhythmic changes and peaks to show across modalities.
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(Universitätsklinikum Freiburg, UKF) sites, several participants dropped out of the study before they completed 
the planned 6-month follow-up (KCL N = 5/15; UKF N = 1/12). Furthermore, for some patients, the follow-up 
period was deliberately shortened to 3 months (KCL N = 3/15; UKF N = 1/12). These data were included in this 
quality assessment. Tables 4 and 5 present the aggregated scores for all participants of the respective cohorts, i.e., 
the mean, median, standard deviation, minimum value, and maximum value. Furthermore, Figs. 4 and 5 further 
visualize these results in swarm plots per participant, for the inpatient and outpatient cohorts, respectively.

Results of completeness, on‑body, and signal quality tools. We used multimodal data quality met-
rics (data completeness, on-body score) and modality-specific signal quality metrics (EDA, BVP, TEMP) to 
assess data loss, compliance, and amount of data containing artifacts, in a structured and quantitative manner 
over multiple independent cohorts. We used these metrics to compare inpatient and outpatient data quality, 
investigate whether recording location makes a difference, and evaluate the effect of time of day on the recording 
quality. Tables 4 and 5 summarize the results of the data and signal quality analysis per cohort and per metric. 
Statistical values are presented in Supplement 1.

Data completeness. Results show a difference between cohorts using the device in memory recording mode 
and cohorts using the data streaming mode (p < 0.001). While data loss (i.e., the inverse of data completeness) in 
the former datasets was consistently below 10%, the latter had up to 50% loss on average, with variances across 
individual recordings. Accordingly, the range between the minimum and the maximum data completeness for 
streamed recordings is much higher, ranging from almost no data recorded to all possible data recorded.

On‑body score. On-body scores were consistently high across all cohorts, with average values above 80%. 
While some outliers in some cohorts exist, the variance among individuals was also relatively low, suggesting 
overall good compliance regarding wearing the device as uninterrupted as possible.

Modality‑specific signal quality. For all cohorts, the TEMP data had the highest signal quality (mean = 96.1%), 
followed by EDA (mean = 70.4%) and BVP (mean = 60.2%). BVP also consistently had the lowest maximum 
quality per cohort.

Comparison of inpatient and outpatient results. Comparing the in-hospital (Fig. 4) and ambulatory (Fig. 5) 
data sets over the three centers that recorded both revealed no differences in data or signal quality measures. 
However, follow-up analysis per site revealed that for individual sites inpatient data showed higher data com-
pleteness values and for one site EDA signal quality was better than in the outpatient setting (see Supplement 1 
for p-values).

Figure 3.  Example of ~ 24 h of long-term ambulatory data from the Empatica E4 device (healthy test subject). 
Plots from top to bottom: ACC (x, y, z), BVP, EDA, TEMP. Off-body periods are highlighted in gray. Periods 
of low EDA and BVP signal quality scores are highlighted in red (the lighter the color the better the quality, 
no color = 100% quality). The recording is divided into three parts by the two off-body periods. Left: first day 
afternoon and evening; Middle: night; Right: morning and rest of the second day.
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Comparison of different device placements. In the BCH inpatient cohort, participants wore devices on the wrist 
(N = 383) or the ankle (N = 447). Recording location did not affect the data completeness and on-body scores; 
in both scenarios, the mean scores differed by only 0.1%. For the BVP and TEMP modalities, the average signal 
quality scores at the wrist were lower by 4.7% (p < 0.001) and 2.1% (p = 0.015), respectively.

Comparison of the day‑ and nighttime recordings. A diurnal cycle is identifiable when visually inspecting data 
and quality scores over longer periods (Fig. 3). We confirm this in our recorded data sets by filtering the data 
quality results grouped by time of day (Fig. 6), separately aggregating scores during daytime (8 am to 8 pm) 
and nighttime (8 pm to 8 am). BVP and EDA indicate a difference between day- and nighttime scores (both 
p < 0.001). Over all cohorts, the mean of BVP scores is 49.9% during the daytime, but 70.7% at night. EDA 
scores at night (mean = 75.1%) are higher than day scores (mean 65.6%). The data completeness during the night 
(88.5%) is also better than during the day (82.8%; p < 0.001). The on-body scores and TEMP signal quality did 
not differ between day- and nighttime recordings (both < 1% mean difference).

(a) Data from all seven cohorts is shown together (N = 1094). Horizontal bars mark the overall mean, both 
differences are statistically significant (p < 0.001). (b) Average signal quality by the hour of the day and by cohort.

Discussion
Ambulatory recordings using wearable devices are gradually becoming part of the diagnostic toolbox for moni-
toring patients with diseases of the central nervous system. Completeness and quality aspects are critical for 
practical implementation, especially in the field of epilepsy where seizures can happen on a scale of seconds 
to a few minutes. Each sample of data can potentially contain relevant information, and signal quality must be 

Table 4.  Data quality results for the inpatient cohort data, presented as the aggregated scores for all 
participants of the respective cohort. We report the amount of data recorded between the start and end of the 
recording as completeness. From this, we test how long the device is worn on the body, and score the signal 
quality of the modalities EDA, BVP, and TEMP. Additionally, we report the duration of the recorded data 
in h:m:s = hours:minutes:seconds. *N recordings = 832, some patients had multiple admissions and multiple 
simultaneous devices. † Signal quality scores are in relation to data periods estimated as on-body in the 
previous step.

BCH N patients = 415*
Sum 
h:m:s = 25,600:30:56

Completeness (%) On-body (%) EDA† (%) BVP† (%) TEMP† (%) Duration h:m:s

Mean 98.4 88.3 68.9 60.6 95.5 30:46:11

Median 100.0 99.7 75.9 63.3 99.4 23:49:25

Std 6.4 23.0 26.6 19.7 12.2 16:54:30

Min 51.3 4.2 0.0 0.0 7.5 01:15:44

Max 100.0 100.0 99.6 98.5 100.0 96:29:16

KCL N patients = 29
Sum 
h:m:s = 2181:43:27

Completeness (%) On-body (%) EDA† (%) BVP† (%) TEMP† (%) Duration h:m:s

Mean 51.5 82.4 62.7 51.5 92.4 75:13:54

Median 49.6 93.9 67.2 52.0 99.3 49:22:04

Std 26.5 24.8 26.2 18.1 16.4 63:40:27

Min 1.9 5.0 11.6 8.1 27.0 04:04:48

Max 97.5 100.0 97.6 77.9 100.0 284:04:31

MCR N patients = 19
Sum 
h:m:s = 1825:33:38

Completeness (%) On-body (%) EDA† (%) BVP† (%) TEMP† (%) Duration h:m:s

Mean 97.9 99.0 78.4 63.2 99.9 96:04:55

Median 100.0 100.0 91.9 58.5 100.0 89:56:13

Std 3.3 4.2 21.4 15.3 0.1 49:03:13

Min 88.9 81.7 35.1 38.5 99.7 19:59:16

Max 100.0 100.0 97.8 85.6 100.0 224:23:33

UKF N patients = 169
Sum 
h:m:s = 7557:47:47

Completeness (%) On-body (%) EDA† (%) BVP† (%) TEMP† (%) Duration h:m:s

Mean 54.2 98.0 75.7 60.0 98.6 44:43:14

Median 52.7 100.0 81.8 62.4 100.0 36:30:10

Std 27.0 6.0 20.4 16.5 6.3 36:56:26

Min 5.0 58.6 8.6 3.9 53.6 01:17:34

Max 100.0 100.0 99.6 90.5 100.0 243:27:47
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assessed thoroughly. Signal quality assessments have been done under more general  circumstances10,34–37, but 
wearable data quality in the context of epilepsy has not been a widely researched topic so  far8,9,38.

We created a qualitative visualization of wearable artifacts and developed a tool for the quantitative analysis 
of data quality based on wearable data from seven cohorts of epilepsy patients. Artifact sources are multifaceted 
(Fig. 2). Motion artifacts are a primary cause of bad signal quality, and research has suggested various methods for 
mitigating  these26,39,40. Overall, we found that temperature measurements are least impacted by artifacts, followed 
by EDA and BVP recordings. The recording mode of the device had the highest impact on data loss (Table 4, 
Fig. 4). Moving to an ambulatory setting may further amplify the impact on data loss. However, our data set 
also showed slightly higher quality for EDA signals in this setting (Table 5, Fig. 5). We found that the recording 
location, here wrist or ankle, and the time of day can impact the signal quality for all modalities, especially for 
BVP and EDA. Visual inspection of data and quality scores over extended periods (Fig. 3) reveals the influence 
of time of day, seeing that a diurnal cycle is identifiable.

Different artifacts have different multimodal signatures. The signal quality of wearable data is 
affected by a multitude of artifacts (Figs. 2, 3). Artifacts originate from the environment, the person wearing the 
wearable, and the device  itself41. Device-specific artifacts are often difficult to detect and typically include electri-
cal noise, indirect changes in the signal due to a rise in the operating temperature of the device over time, time 
shifts, and calibration  offsets20. These types of artifacts are not further evaluated in this study. Person-specific 
artifacts comprise motion artifacts and improperly worn devices, which can both lead to sensors losing skin con-
tact, as well as accidental power off. Artifacts can affect modalities differently. While a complete loss of contact 
results in a 0-line for the EDA signal, motion artifacts without contact loss result in abrupt level changes or high 
amplitude fluctuations, and PPG shows considerable deviation from expected signal  patterns24,42.

Ambient artifacts are for example light artifacts interfering with the light of the PPG  sensor43, weather condi-
tions, such as high humidity which increases the moisture level of the skin surface and thus its  conductivity44, as 
well as coverage of the device for example by a blanket which increases the temperature and thereby potentially 
EDA  levels45. The temperature and EDA levels are also likely to be influenced heavily by the season when the 
recording takes  place46. Ambient temperatures inside as well as outside may differ based on season. The tempera-
ture thresholds defined for the on-body and signal quality assessment in this study were set with standard indoor 
temperatures in mind and could be adjusted for seasonal changes in future studies. Furthermore, assessing only 
relative changes in the data or employing normalization techniques may be advisable.

Table 5.  Data quality results for the outpatient cohort data, presented as the aggregated scores for all 
participants of the respective cohort. We report the amount of data recorded between start and end of the 
recording as completeness. From this we test how long the device is worn on the body, and score the signal 
quality of the modalities EDA, BVP, and TEMP. Additionally we report the duration of the recorded data in 
h:m:s = hours:minutes:seconds. *Includes data from dropped-out participants, and those with deliberately 
shortened follow-up. † Signal quality scores are in relation to data periods estimated as on-body in the previous 
step.

KCL N patients = 14*
Sum 
h:m:s = 11,209:23:59

Completeness (%) On-body (%) EDA† (%) BVP† (%) TEMP† (%) Duration h:m:s

Mean 30.1 93.9 88.0 62.3 99.3 800:40:17

Median 26.0 98.4 88.1 63.2 99.9 683:50:17

Std 20.0 15.7 7.8 11.4 1.8 799:28:26

Min 6.3 40.2 72.9 44.1 93.3 57:07:04

Max 65.8 100.0 99.0 77.9 99.9 2977:36:48

MCR N patients = 14
Sum 
h:m:s = 65,394:52:36

Completeness (%) On-body (%) EDA† (%) BVP† (%) TEMP† (%) Duration h:m:s

Mean 76.9 97.8 76.0 53.9 97.6 4671:03:45

Median 85.0 99.0 77.6 54.1 99.3 4933:49:38

Std 22.7 3.8 13.0 17.6 5.1 2663:24:57

Min 18.5 85.2 52.9 4.0 80.3 270:09:58

Max 97.4 100.0 95.6 71.8 100.0 8097:26:03

UKF N patients = 11*
Sum 
h:m:s = 14,172:02:42

Completeness (%) On-body (%) EDA† (%) BVP† (%) TEMP† (%) Duration h:m:s

Mean 34.1 96.5 78.7 55.1 99.3 1288:22:03

Median 27.1 98.6 83.7 53.1 99.7 1137:18:34

Std 22.3 4.6 18.2 22.2 0.7 939:58:26

Min 7.3 85.3 48.3 6.0 98.1 312:01:18

Max 68.3 100.0 95.6 80.5 100.0 3000:34:58
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Figure 4.  Swarm plots of data quality score distributions for the inpatient cohorts of (a) BCH (N = 832), (b) 
KCL (N = 29), (c) MCR (N = 19), and (d) UKF (N = 169).

Figure 5.  Swarm plot of the data quality score distributions for the outpatient cohorts (N = 39).
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Other major factors potentially impacting the recording quality for wearable devices are the location on the 
body the device is attached to, and the time of day the recording took place, both of which were further analyzed 
in this study and are discussed below. In addition, there are some other aspects that may influence data quality 
which we did not further evaluate in this study. Prominently, the skin color of the subject has been a major point 
of discussion concerning the quality of PPG  recordings14,47,48. As the sensor directly depends on reflectance prop-
erties of the skin tissue, different skin colors may change the overall signal quality of the recorded PPG  data49,50. In 
this context, the Empatica E4 device has been reported in one study to perform worse than some consumer-grade 
wearable  devices14. Nevertheless, these other devices are not certified as medical devices for epilepsy monitoring, 
and generally do not provide direct access to raw sensor data like the Empatica E4 does. In the studies presented 
here we did not focus on the aspect of skin color and further analysis is needed in future work. Moreover, the 
overall design of the device can affect patient comfort and thereby  compliance51, and patients in whom seizures 
are difficult to detect due to atypical tracings in EDA recordings have been reported in related  work52,53.

Data completeness and on‑body score depend on recording setting and are comparable across 
different centers. The recording mode of the wearable device was the main cause of differences in data loss, 
with the two centers using the streaming mode showing considerably less overall data completeness (Table 4). 
The device memory mode is very reliable and data loss only occurs whenever the device is switched off to swap 
it or when using the shower, as seen in previous  studies20,21,54. But, this comes with considerable additional effort 
for the user, who needs to regularly connect the device to a computer to synchronize the data and free up device 
memory, as well as additional data privacy considerations introduced by the device manufacturer’s cloud ser-
vice. Conversely, the streaming mode allows for direct and uninterrupted control of the data, at the expense of 
data completeness, losing on average about half of the data in the cohorts presented here (Table 4), likely due to 
Bluetooth range  constraints20.

Furthermore, in our studies across centers utilizing the device, the battery life tends to worsen with prolonged 
and regular  use55 in the range of only a few  months20. We also found that the sampling rate has a certain drift 
over time, such that timestamps for data samples can be inaccurate by up to one second per hour of  recording20. 
These issues may also have had some minor effects on the data completeness calculations.

Any longer-term data sets from wearable devices, especially if recorded in ambulatory settings, will contain 
periods where the device was recording, but not actually on the subject’s body in the correct manner, as also 
noted in previous  studies21,30. This could, for example, happen due to the subject removing the device for a short 
amount of time to do activities like washing, heavy-duty work, or sports, while leaving the device on and record-
ing. Since the data from such periods contains no relevant information, data may need to be edited accordingly 
before performing the signal quality checks suggested here. Moreover, some research has investigated avoiding 
this problem altogether by further developing the devices, e.g., integrating wearables with the human body 
beyond wristbands or similar  devices56.

Another study assessed the performance of patients with epilepsy in self-managing wearable  devices38. Their 
questionnaire-based results are gathered from a cohort wearing the same device used in this study, operated in 
streaming mode. Their cohort is a subset of the KCL inpatient cohort presented here. Study participants had 
the best compliance concerning wearing the device and correctly fitting it, while compliance was worst when 
it came to pairing the device to a Bluetooth companion device, with frequent connection issues. These results 
directly coincide with our assessment of the data in terms of good on-body scores and bad data completeness.

This multicenter study confirms and extends the findings and methods of previous studies 
on modality‑specific signal quality. BVP data is dependent on measuring reflected light from a light-
emitting diode (LED), and this signal can be heavily skewed by contamination from external light sources and 
motion artifacts, sometimes to the point of being irrecoverable through retrospective data  processing40,57,58. 

Figure 6.  Comparison of EDA and BVP signal quality scores when grouping data by day- and nighttime.
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Thus, any movement of the device and, by extension,  the body part it is attached to, may result in motion 
artifacts in the signal. Direct sunlight falling on the wearable could also have a considerable effect on the data 
quality. These conditions have a direct impact on BVP data recorded over multiple days, which is reflected by 
the overall worst signal quality results in our cohorts for this modality. In another study, the feasibility of using 
the BVP signal to detect epileptic seizures was analyzed considering peri-ictal periods  only8. Thus, these results 
are not directly comparable to ours which are based on entire data sets including inter-ictal periods. A different 
study group also investigated the signal quality of BVP data recorded from patients with  epilepsy9. They how-
ever do not provide a quantitative statement that would be comparable to our results. Still, our signal quality 
metric is building on, expanding, and validating this research group’s average values for what they describe as 
good, marginal, and noise data. Moreover, one study reports 94% overall good quality in their estimated heart 
rate based on PPG data, but their data set is restricted to recordings at night and they do not further specify the 
signal quality measure they  apply59.

Wearables record thermal activity by measuring the skin temperature at the recording location. This is often 
lower than commonly known values for human core body temperature, e.g., when determining fever, and is 
more prone to environmental  influences60. Like other responses of the sympathetic nervous system, changes in 
peripheral body temperature can take multiple seconds and might occur delayed. While thermoregulation in the 
context of epilepsy has been a topic of some research in the  past61,62, its causes, effects, and interactions are not 
well understood. Furthermore, when the sensor is covered for some time, the environmental temperature may 
increase, which could result in a higher temperature recorded from the wrist. As part of thermoregulation, the 
patient might then also sweat more due to the increased environmental temperature and EDA might increase. 
Overall, the relevance of skin temperature measurements for epilepsy monitoring awaits further exploration.

Besides thermoregulatory processes, other responses of the sympathetic nervous system like piloerection 
or psychophysiological arousal may also induce changes in the EDA  signal44. EDA is typically recorded by dry 
electrodes which do not necessarily need to be adhesive, as long as they have continuous contact with the skin, 
as is the case with the Empatica E4 device used here. Artifacts in the EDA signal are thus often caused by con-
nection loss of the electrodes to the skin due to, e.g., body motion, and present as a sharp decrease or increase, 
or fall to a zero-line value  altogether12. These kinds of artifacts can be detected by simple thresholding as well as 
analysis of the rate of amplitude  change9,12, similar to the artifacts seen in the temperature signal. The circum-
stantial and short-term nature of these artifacts is also reflected in our results by the highest overall variances 
per modality. Still, a majority of individual recordings score higher than 75% adequate EDA data. Our study 
builds on an EDA signal quality analysis, using the same device and presenting similar metrics applied to  data9. 
These authors report an average of 35.7% marginal or noise segments per minute of EDA data. In our terms, 
this would directly compare to an EDA signal quality score of 64.3%, congruent with the results shown here of 
EDA scores between 50 and 80%.

Accelerometry is captured by a sensor measuring activity induced by motion. The design and functionality 
of ACC sensors may lead to sensor noise and other inconsistencies like sensor saturation or  displacement63–65. 
However, these sensors do not produce measurable artifacts with any practical relevance to the topic at  hand13. 
Any movement large enough to cause a change in the sensor could be measured, and there are no external, 
physical, or other reasons for the sensor to produce a change in the signal if there was no movement. Thus, we 
did not evaluate the data quality of the ACC signal in more detail.

In seizure monitoring, well-established wearables are the Empatica Embrace and  E466. The E4 is a research 
device that allows accessing raw data and, in addition to the sensors integrated into the Embrace device, records 
cardiac activity. Therefore, all centers used the E4. The Empatica E4 device, specifically, has been used in a number 
of other studies related to epilepsy monitoring as well as in other contexts. Naturally, the signal quality of PPG 
data in general is often discussed in other work as it is highly susceptible to motion  artifacts57, however, there 
is also a high variance in PPG signal quality across different  devices67, such that a device-specific consideration 
seems appropriate. One study, for example, reports that more than half of epileptic seizures in a data set could not 
be detected from Empatica E4 PPG data due to motion  artifacts68. In another study assessing PPG as a measure 
for epileptic seizures, the data from three out of eleven patients wearing an Empatica E4 device was not usable, 
since no seizure periods without motion artifacts could be  recorded69. The device has also been evaluated in 
general purpose real-world settings, with results indicating that the Empatica E4 may be unsuited for monitoring 
everyday  activities70,71. Even so, it remains the only certified research-grade epilepsy monitoring device on the 
market that provides raw data for all of the modalities investigated here, relevant to epileptic seizure detection. 
The Empatica EmbracePlus is an upcoming wearable device featuring the same signal modalities as the E4, but 
at this time no studies using the device have been published yet, and a data and signal quality review similar to 
this one will be necessary. Moreover, the E4 has been shown to facilitate seizure detection by heart rate estima-
tion from PPG despite its susceptibility to motion  artifacts8,72.

Large amounts of data can be collected in the outpatient setting, but reduced control is 
reflected in less data completeness. In ultra-long-term monitoring, patients are in a much less con-
trolled environment and recordings can last for multiple months, instead of multiple days as is the case for 
inpatient recordings under more controlled conditions. Therefore, biosignal recordings may be of overall lesser 
 quality12. In our data, however, ambulatory recordings did not necessarily indicate worse performance in terms 
of data quality. Data completeness was not significantly different in the outpatient setting when comparing over-
all cohorts, but differences were significant for individual centers, as would be expected considering the largely 
unsupervised data collection procedures. However, the outpatient datasets all have comparably small cohort 
sizes such that the results may be skewed. On-body scores were comparably high in all cohorts, although the 
smaller cohorts and more targeted recruitment process could have introduced some selection bias with regard 
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to compliance. Comparing signal quality for individual modalities showed that BVP data have the lowest quality 
for in-hospital and outpatient data, underlining its high susceptibility to measurement  artifacts57. Interestingly, 
the ambulatory results do not significantly differ from the inpatient results for any of the signal modalities, sug-
gesting that the presumably more frequently occurring motion artifacts in the outpatient setting did not have a 
significant effect on signal quality. This may be explained by the smaller and more selective ambulatory cohorts.

Ankle placement offers an additional recording location for pediatric patients. We also inves-
tigated if different recording locations on the body have any influence on data quality. At the BCH site, where 
predominantly pediatric patients were recruited, participants wore the device at either the ankle or the wrist. 
While there was no substantial difference in quality for data completeness and on-body scores, the recording 
location did seem to have some effect on the quality of the recorded signals, as has been suggested in some other 
 studies26,58,73,74. BVP and TEMP signal quality was better when the wristband was placed on the ankle. This 
could be explained by the relatively fewer movements of the ankle location as opposed to the wrist, especially in 
the inpatient setting. Lower EDA quality at the ankle is likely due to sweat gland distributions and exact sensor 
placement on the ankle, i.e., medial or lateral. Patients or caregivers choose the ankle location based on comfort 
and where other medical devices are placed. Furthermore, the ankle placement might be more unobtrusive in 
the outpatient setting. Concerning epilepsy monitoring, the placement of the wearable device on the ankle could 
provide an additional opportunity for better recordings in pediatric patients.

Wearables offer a good option for nighttime monitoring. Overall data quality is higher during 
nighttime compared to daytime. This finding in our large cohort is in line with findings in smaller samples 
specifically for PPG  data35,75. Higher data completeness during the night likely results from fewer risks for the 
wearable device to be disconnected, such as moving away from the recording device in the outpatient setting, 
or otherwise stopping recording accidentally. The differences in EDA and BVP signal quality may be related to 
reduced movement during sleep, as well as usually darker environments specifically concerning the BVP sensor. 
Thus, this divergence might be even more pronounced if a standard 8-h night or sleep estimation, or an indi-
vidual sleep detection, were applied to the comparison. In the context of epilepsy monitoring, this is particularly 
relevant for various reasons. Epileptic seizures are underreported in manual seizure diaries, especially during the 
 night76. Furthermore, the risk of sudden unexpected death in epilepsy patients is higher during the  night77. As 
such, robust wearable monitoring systems would substantially improve both seizure reporting as well as alarms 
during the nighttime periods in patients’ daily living.

Limitations. Results need to be interpreted in the setting of data collection. While some key aspects of the 
cohorts from the four international centers align, like the choice of the wearable device and the study participant 
inclusion criteria, the results also need to be interpreted in the setting of minor variations in the data acquisi-
tion setups. The participant recruitment and enrollment procedures were not consistently aligned between the 
centers. There also were technical differences between the devices used in the studies. While all recordings were 
performed with an Empatica E4 device, different hardware and firmware versions may have been used across 
and even within cohorts. Furthermore, besides a rough range of up to 14 days for inpatient recordings and up 
to 12 months for outpatient recordings, the target recording length was undefined in all cohorts. Additionally, 
beyond differences in demographics and device placements, deployment in different regions may have contrib-
uted to  variability78. Enrollment procedures for the ambulatory studies also partially included new patients who 
did not necessarily participate in an inpatient study. The selection process for some cohorts targeted patients 
with a high perceived potential for compliance, based on familiarity with wearable technology and willingness 
to participate in months-long studies.

Our cohorts are furthermore subject to selection and information bias. Pediatric inpatients were mostly 
drug-refractory and therefore results might not be generalizable to other patients, however, the impact on data 
quality is presumably small. Similarly, we did not take medication effects into account, while some anti-seizure 
medications might influence autonomic activities. Especially in the outpatient settings, we could not control 
for environmental temperature that impacts TEMP and EDA measures. Our current separation of the day- and 
nighttime recordings does not reflect sleep times. While in the inpatient setting sleep time relates to hospital 
routines, we had no way of determining sleep times in outpatient recordings. Therefore we decided to split the 
day into halves to make comparisons easier. In addition, we did not analyze in detail any differences in data and 
signal quality with respect to age, particularly concerning very young patients recruited in the BCH cohort.

Lastly, while the BVP signal quality measure applied in this study has been used in some other research, it has 
not been extensively validated concerning its meaningfulness in robustly estimating a heart rate. While there is 
cursory evidence that it correctly maps periods of good and poor signal quality to estimations of the heart  rate8,9, 
a thorough validation is still planned in the future. This validation will need to include a new data collection 
protocol under laboratory conditions with alternative ground truth recordings for all signal modalities. Espe-
cially for EDA and TEMP recordings, no currently accepted gold standard exists beyond the methods employed 
 here79, and would need to be established in this further validation. Nevertheless, the analysis of sample artifact 
and ambulatory data we conducted in this study (see Figs. 2, 3) suggests a good accordance of the metrics with 
actual signal quality and on-body state of the device. Overall, reproducibility of results across different cohorts 
and in different settings suggests an overall robust data acquisition paradigm.
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Conclusion
We present an approach to assessing data quality from wearable recordings and apply our methodology to data 
sets recorded across four international epilepsy centers in the inpatient and outpatient settings. We provide a 
detailed overview of typical artifacts influencing wrist-worn non-EEG wearable data collection and implement a 
comprehensive tool to appraise this data in terms of data completeness, on-body score, and signal quality. Signal 
recording quality affects all autonomic modalities, and especially blood volume pulse recordings. Artifact rec-
ognition and data quality ratings may provide additional value and improve precision, may serve as a standard 
metric in experimental studies, and foster further design improvements for future wearable device studies in 
epilepsy research. While all of the signal quality metrics employed in this study have been used in other research 
before, some still lack a structured and comprehensive validation on ground truth data, which is a necessary next 
step. Remote monitoring is feasible for patients with epilepsy across the lifespan. Results may empower users to 
make more informed choices that impact not only their lifestyle but also physical health.

Data availability
A subset of the data used in this analysis is available at https:// www. epile psyec osyst em. org/ (Dr. Levin Kuhlmann, 
levin.kuhlmann@monash.edu). Under the terms of the data-sharing agreements for the patient cohorts included 
in this study, we are unable to share the other source data publicly.

Code availability
All code used in this study is available at: https:// github. com/ WEAR- ISG/ WEAR- DataQ uality.
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