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Abstract
PPG-based continuous heart rate estimation is challeng-
ing due to the effects of physical activity. Recently, meth-
ods based on time-frequency spectra emerged to compen-
sate motion artefacts. However, existing approaches are
highly parametrised and optimised for specific scenarios.
In this paper, we first argue that cross-validation schemes
should be adapted to this topic, and show that the gener-
alisation capabilities of current approaches are limited. We
then introduce deep learning, specifically CNN-models, to
this domain. We investigate different CNN-architectures
(e.g. the number of convolutional layers, applying batch
normalisation, or ensemble prediction), and report insights
based on our systematic evaluation on two publicly avail-
able datasets. Finally, we show that our CNN-based ap-
proach performs comparably to classical methods.
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Introduction
Continuous heart rate monitoring is essential in a num-
ber of domains, e.g. for healthcare or fitness applications.
Recently, wrist-worn heart rate monitors (based on photo-
plethysmography (PPG)), have become widely used. Vari-
ous commercial products include a PPG-sensor nowadays,



such as the Apple Watch [2] or the Samsung Simband [18].
However, compared to traditional ECG, heart rate estima-
tion is more challenging based on the PPG-signal. Espe-
cially motion artefacts, caused by the user’s physical activ-
ity, can significantly reduce the PPG-signal quality. There
exists a large amount of work relying on different (adap-
tive) filtering methods (e.g. [15]) or separating the heart rate
component from the motion artefact and other noise com-
ponents within the time series (e.g. [11]).

One major issue within this research field is the limited
availability of labelled data, hindering purely data-driven
approaches. Recently, physical knowledge has been used
to alleviate this issue. Since heart rate produces a period-
ical signal, representations outside the time-domain could
prove beneficial to highlight this periodicity. For example,
Jaafar and Rozali [10] applied wavelet transform analysis
to estimate heart rate and breathing rate from the PPG-
signal. Another promising signal representation is the time-
frequency spectrum, which emphasises the periodic heart
rate as well as periodic physical activities. The core idea
of spectrum-based approaches is to distinguish the heart
rate and motion-based periodicity, supported by motion-
derived time-frequency spectra (e.g. based on simulta-
neously recorded PPG and acceleration signals) [17, 19].
However, extracting heart rate from time-frequency spectra
is cumbersome with current approaches, as they are highly
parametrised and were developed to fit only certain scenar-
ios. Our results, presented below, indicate that there is still
a need for an approach which can generalise well.

We suggest an end-to-end learning technique, instead of
relying on hand-crafted rules and features. Our deep learn-
ing approach takes the time-frequency spectra of the PPG-
and accelerometer-signals as input, and provides the es-
timated heart rate as output. Deep learning has already

been applied to various time-series signals, such as for
human activity recognition [5, 7, 13] or gait parameter ex-
traction [8]. Gjoreski et al. [5] compared deep and classical
machine learning methods on a human activity classifica-
tion task. Hammerla et al. [7] compared CNNs to recurrent
neural networks (RNN), concluding that CNNs are more
suitable for continuous periodic activities. Hannink et al. [8]
used CNNs for regression tasks, estimating different param-
eters related to human gait. Considering deep learning ap-
proaches for PPG-signal analysis, Shashikumar et al. [20]
provide an example: They first applied wavelet transform on
an 8-channel PPG-signal, and then used a CNN-model to
extract relevant information for atrial fibrillation detection.

In this paper, we investigate different CNN-architectures
for heart rate estimation based on PPG-data. In doing so,
we rely on physical knowledge of PPG and accelerometer
sensor data, as shown beneficial in recent work. Based on
the analytic understanding of heart rate and many physical
activities (mainly periodic signals), and based on related
work with spectrum-based classical models, we use time-
frequency spectra as input representation for our CNN-
models. To the best of our knowledge, this is the first paper
applying deep learning to PPG-spectrum-based heart rate
estimation. The main contributions of this work are three-
fold:

1. We introduce the leave-one-session-out cross-validation
to this domain, and show that the generalisation ca-
pabilities of current approaches are limited.

2. We introduce deep learning for PPG-spectrum-based
heart rate estimation, and compare it to three classi-
cal approaches.

3. We investigate different CNN-architectures and report
insights based on our evaluation.



Classical Methods
Datasets
We rely on the two publicly available datasets introduced
for the IEEE Signal Processing Cup in 2015 [4, 22]: the
training dataset (referred to as IEEE_Training) and the test
dataset of the competition (referred to as IEEE_Test). The
datasets were recorded with a wrist-worn device, includ-
ing a two-channel PPG sensor (both green LEDs, wave-
length: 515nm) and a three-axis accelerometer (placed
at the same position as the PPG-sensor). Moreover, both
datasets include a simultaneously recorded ECG signal,
providing heart rate ground truth. The sampling rate of all
signals is 125Hz. The IEEE_Training dataset consists of 12
sessions, each recorded from a different subject while run-
ning on a treadmill at varying speed. Each session lasted
approximately five minutes. The IEEE_Test dataset con-
sists of 10 sessions, recorded from 8 different subjects
while performing one of two exercise types. Subjects per-
formed various forearm and upper arm exercises during 4
sessions, and performed mainly intensive arm movements
(such as boxing) during 6 sessions. Each of these sessions
lasted approximately five minutes. More details on both
datasets can be found in [4, 22].

Ground truth for both datasets is given every two seconds,
calculated as mean heart rate over 8 seconds from the
ECG-signal. We adapt this sliding window approach (win-
dow length: 8 seconds, window shift: 2 seconds) for heart
rate estimation, as was done in previous work [17, 19, 21,
22]. Ground truth and heart rate estimation are given in
beats-per-minute (bpm) in this paper. As performance met-
ric, we rely on the mean absolute error (MAE):

MAE =

W∑
w=1

|BPMest(w)−BPMref (w)| (1)

where W is the total number of windows, and BPMest(w)

and BPMref (w) denote the estimated and reference heart
rate value in beats-per-minute on the wth window, respec-
tively.

Algorithms
Based on the above described datasets, various tech-
niques have been proposed to estimate heart rate from
PPG-signals corrupted by motion artefacts. We focus on
two recent algorithms in this paper, reported to outperform
previous approaches (referred to as SpaMa [17]) or at least
perform similarly with lower computational cost (referred
to as Schaeck2017 [19]). Moreover, we extend the heart
rate tracking part of SpaMa, which will be referred to as
SpaMaPlus. A brief description of the three approaches
follows below.

SpaMa: This approach first calculates the power spectral
density of the PPG and accelerometer signals on each 8-
second window. Then, the highest peaks are found in each
spectrum. Peaks in the acceleration-spectrum correspond
to motion. Therefore, removing these peaks from the PPG-
spectrum results in removing the major motion artefacts.
The highest peak in the remaining PPG-spectrum corre-
sponds then to the heart rate. Algorithmic details of this
approach can be found in [17].

SpaMaPlus: Since abrupt changes in heart rate are physi-
ologically limited, relying on the estimated values from pre-
ceding segments is recommendable. However, SpaMa only
considers the last segment in its heart rate tracking step.
In order to increase the robustness of the estimation, we
extended this step by considering the last six segments. In
case the current segment’s heart rate estimation is uncer-
tain, we rely on the mean value of the preceding segments.
Moreover, to identify and avoid consecutive false estima-
tions, we examine the plausibility of previous estimations.



Table 1: Evaluation of classical methods on the datasets IEEE_Training and IEEE_Test. Left column: session optimised results, right column:
LOSO cross-validation. Results are reported as MAE ± STD [bpm], where standard deviation is computed on the different individual sessions.

IEEE_Training IEEE_Test
optimised LOSO optimised LOSO

SpaMa 1.33±1.4 13.1±20.7 2.53±2 9.20±11.4
SpaMaPlus 1.38±1.4 4.25±5.9 3.56±3.9 12.31±15.5
Schaeck2017 1.33±1.3 2.91±4.6 6.48±8.3 24.65±24

Schaeck2017: Opposed to SpaMa and SpaMaPlus, this
approach relies on both PPG-signal channels. First, to en-
hance periodic components, a correlation function is ap-
plied on the time series signal. Then, the spectrum of the
resulting time series is computed. Similar to SpaMa, motion
artefacts are reduced by taking the acceleration spectra into
account. Finally, a linear least squares fit on the preceding
three segments is applied for heart rate tracking. Algorith-
mic details of this approach can be found in [19].

Evaluation
All three algorithms have in common that they include sev-
eral adjustable parameters, such as the number of highest
peaks to consider in each spectrum, or the minimum re-
quired frequency difference for removing motion-induced
peaks. Instead of applying a cross-validation scheme, it
is common practice in related work to tune these parame-
ters for each dataset-session specifically, in order to report
optimal results (low MAE-values). However, the practical
relevance of these results is limited in our opinion. When
deploying PPG-based heart rate estimation algorithms in
real-life settings, there is no access to ground truth infor-
mation. Therefore, the optimisation of these algorithms to
a specific subject or even a specific session is not possi-
ble. Instead of reporting session-optimised results, we ar-
gue that leave-one-session-out (LOSO) cross-validation
should be preferred. During this cross-validation scheme,

parameter optimisation is performed on all data except of
one session, and the left-out session is used as test data.
This procedure is repeated so that each session is used as
test data exactly once. Thus, results reported with LOSO
cross-validation reflect the generalisation capabilities of
algorithms. However, as reported in other domains [16],
large performance difference is to be expected between
subject/session-dependent and -independent evaluation.

We implemented the three algorithms described above
(SpaMa, SpaMaPlus, and Schaeck2017 ) and evaluated
them on the IEEE-datasets. For parameter setting, we
performed both session optimisation and LOSO cross-
validation, using random search of the parameter space
in both cases. We report results in Table 1. Considering
session optimisation, the results match the ones reported in
the original publications [17, 19]. Small differences can be
explained by the random parameter search. We observed
that especially the SpaMa-based approaches are very sen-
sitive to the parameter setting. Considering LOSO cross-
validation, the performance significantly decreased com-
pared to the session-optimised results. Moreover, the three
implemented algorithms performed differently on the two
datasets. Schaeck2017 performed best on IEEE_Training,
but was significantly worse than the other two approaches
on IEEE_Test. On the other hand, the best performing
approach on IEEE_Test (SpaMa) was the worst on the



Figure 1: Proposed CNN-architecture with NL = 1...8 convolution-maxpool layers. N depends on NL. Output: HR [bpm].

dataset IEEE_Training. It should be noted that our modi-
fied version of the SpaMa-approach (SpaMaPlus) achieved
the best combined result on both datasets while applying
LOSO cross-validation. Overall, the results achieved with
LOSO cross-validation indicate that there is still a need to
develop novel algorithms, which have better generalisation
capabilities both considering different subjects as well as
different situations (physical activities).

Deep Learning Approach
We perform a series of steps before data is fed to the deep
learning model. First, we segment the time-series sig-
nal (the first PPG-channel and all three accelerometer-
channels) with the sliding window as defined before (win-
dow length: 8 seconds, window shift: 2 seconds). We then
apply FFT on each time-series segment. The results of this
step are Nch = 4 time-frequency spectra, one per sig-
nal channel. In the next step we cut these spectra, keeping
only the 0 − 4Hz interval (4Hz corresponds to 240bpm).
The resulting number of FFT-points per segment and chan-
nel is NFFT = 1025. Finally, z-normalisation (zero mean
and unit variance) is performed on each channel’s spec-

trum. The final Nch time-frequency spectra serve as input
for the deep learning model (see Figure 1). Therefore, each
8-second segment of the original time-series is represented
as a Nch ×NFFT matrix. Ground truth of each segment is
the heart rate value as given by the datasets.

As argued in the previous section, we will only focus on
LOSO cross-validation in the rest of this paper. The applied
evaluation scheme on the IEEE_Training dataset (consist-
ing of 12 sessions) is as follows. The dataset is randomly
split into 4 folds, each containing 3 sessions. 3 folds are
used for training, while the remaining fold is split into valida-
tion (2 sessions) and test data (1 session). The validation-
test split is rotated, then the same procedure is repeated
on each of the 4 folds. Thus, training is performed in total
12 times, so that each session serves as test data exactly
once. The applied evaluation scheme on the IEEE_Test
dataset follows a similar procedure. Training is performed
10 times, with each of the 10 sessions serving as test data
exactly once. The remaining part of the dataset is randomly
split each time, having 7 sessions as training and 2 ses-
sions as validation data.



CNN-architecture
We focus on CNN architectures, as suggested in previ-
ous work on continuous periodic time-series analysis [7,
8, 13]. We investigated different network parameters in
a pre-study, such as the number of filters (nf ) and filter
size (sizef ) in each convolutional layer, activation func-
tion, stride in both the convolutional (stridef ) and the pool-
ing layers (stridep), size of the fully connected layer (nfc),
dropout-rate, loss function, optimiser, etc. Moreover, we in-
corporated tracking into the CNN model for two reasons:
The estimated heart rate on a segment highly correlates
to the preceding segments’ values, and heart rate tracking
was successfully applied in classical methods (SpaMaPlus,
Schaeck2017 ). Therefore, the size of the input matrix for a
segment changes to Ntr ×Nch ×NFFT , where Ntr refers
to the number of segments used together for heart rate esti-
mation. The final architecture of our CNN model consists of
the following layers (see Figure 1):

• convolution, n1
f = 8, size1f = (1, 1), stride1f = (1, 1)

• convolution, n2
f = 16, size2f = (Ntr, 3),

stride2f = (1, 1)

• max-pooling, size2p = (1, 2), stride2p = (1, 2)

• for i = 1...NL :

– convolution, ni
f = 2i+4, sizeif = (1, 3),

strideif = (1, 1)

– max-pooling, sizeip = (1, 2), strideip = (1, 2)

• convolution, nlast
f = 32, sizelastf = (1, 1),

stridelastf = (1, 1)

• flattening layer

• fully connected layer, with n1
fc neurons

• dropout layer, with dropout-rate: 0.5

• fully connected layer, with n2
fc = 1 neuron

The first convolutional layer performs fusion of the input
channels (PPG and accelerometer spectra), and the sec-
ond convolutional layer performs fusion of the segments
involved in heart rate tracking. The subsequent convolution-
pooling layers serve to increase the learning capability of
the model, as demonstrated by the results below. The last
convolutional layer is included to reduce the input dimen-
sion of the fully connected layer, leading to less model pa-
rameters and a shorter training time. Exponential linear unit
(ELU) [3] is used as activation function in the entire model.
The parameters NL, n1

fc, and Ntr are further investigated
in the evaluation-section below. The last fully connected
layer outputs one value, the estimated heart rate. The loss
function is defined as the absolute difference between this
output and the respective segment’s ground truth value.
Finally, Adam [12] is used as optimiser.

All deep learning models described in this paper were im-
plemented in TensorFlow, version 1.3 [1]. Training and eval-
uation were done on Nvidia GTX 1080 TI GPUs with 12GB
of RAM. For each test run, 15000 training iterations with a
batch size of 128 were performed. This proved to be suffi-
cient for reaching convergence of the validation error. For
testing, we used the model with the lowest validation error.
We repeated each experiment 7 times, randomly generat-
ing the training and validation sets each time (applying the
evaluation scheme as described above).

Evaluation
We performed a thorough evaluation to investigate the ef-
fect of the following key parameters of our CNN-architecture:
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Figure 2: Evaluation results on IEEE_Training (left) and IEEE_Test (right) datasets, investigating the number of convolutional layers and
ensemble prediction. LOSO results of the classical methods displayed for reference.

NL, n1
fc, and Ntr. Moreover, we investigated the effect of

ensemble prediction and batch normalisation. Our findings
are reported below.

Number of convolutional layers: We considered the range
NL = 1...8 (corresponding to 3...10 convolutional layers in
total when including the first two layers of the architecture).
For this experiment, n1

fc = 512 and Ntr = 7 were fixed
(best setting according to our pre-study). The evaluation
results on both datasets are displayed in Figure 2. Overall,
each additional layer increased the learning capabilities of
the model, peaking at NL = 7. Therefore, we used NL = 7
for the experiments presented below.

Ensemble prediction: For each dataset-session as test
data, results from 7 repetitions (each providing a heart rate
value per segment) are available. These were achieved
with differently trained models, due to random initialisa-

tion and training-validation split. Therefore, since captur-
ing more data variability during training, combining these
models could lead to increased modelling capabilities [6].
We defined ensemble prediction as the mean value of the
7 repetitions. Results in Figure 2 show that combining the
models decreases MAE by 6 − 14%. For example, with
NL = 7: from 4.53bpm to 3.91bpm on IEEE_Training and
from 19.89bpm to 18.33bpm on IEEE_Test, respectively.

Size of the first fully connected layer: We considered the
range n1

fc = 128...1024, evaluation results are shown in
Table 2. This parameter seems to have a marginal effect on
the overall model performance. Thus, we kept n1

fc = 512
for the further experiments.

Batch normalisation: We added batch normalisation [9]
after each convolutional and the first fully connected layer,
results are shown in Table 2. While the effect on the dataset



Table 2: Evaluation of size of the first fully connected layer (n1
fc) and batch normalisation (BN). Average and ensemble prediction results are

given, based on the 7 repetitions.

IEEE_Training IEEE_Test
CNN average CNN ensemble CNN average CNN ensemble

FC size: 128 5.26 4.58 20.67 18.62
FC size: 256 5.04 4.41 20.79 19.64
FC size: 512 4.53 3.91 19.89 18.33
FC size: 1024 4.70 4.09 20.17 18.34

BN + FC size: 512 4.58 4.00 18.27 16.51

IEEE_Training is only marginal, a significant improvement
can be observed on the IEEE_Test dataset. Thus, we in-
cluded batch normalisation for the further experiments.

Number of tracking segments: We considered the range
Ntr = 1...11. Results are not displayed due to brevity,
and due to the only marginal effect on the model’s perfor-
mance. However, one benefit of using Ntr > 1 is that heart
rate estimation becomes smoother over time, which might
be beneficial in practical applications. Thus, we consider
Ntr = 7 a good choice.

Overall, the best performing deep learning model is using
the CNN-architecture as described above (see Figure 1),
incorporating batch normalisation and ensemble prediction,
and applying the following parameter settings: NL = 7,
n1
fc = 512, and Ntr = 7. Results of this CNN-model are

the following: MAE= 4bpm on IEEE_Training and MAE=
16.51bpm on IEEE_Test, respectively. These results are
comparable to the ones achieved with SpaMaPlus, which
provided the best combined results on the two datasets
(see Table 1).

Conclusion
We introduced deep learning for PPG-based heart rate esti-
mation with time-frequency spectra. We investigated differ-
ent CNN-architectures, and showed that they achieve com-
parable results to classical methods. Considering the eval-
uation results of most approaches, the IEEE_Test dataset
seems to be more challenging. This can be explained by
the fact that it includes recordings from different activities
(such as boxing or arm rehabilitation exercises), while only
consisting of 10 sessions. Especially for deep learning ap-
proaches, the available data per activity seems to be insuf-
ficient. Overall, the topic of PPG-based heart rate estima-
tion still needs further investigation, both on the algorithmic
(e.g. considering various signal representations as input
or deep learning architectures other than CNNs) and the
evaluation levels. The generalisation capabilities of different
approaches should be further explored, especially by intro-
ducing larger datasets recorded under real-life conditions.
Further challenges also include exploiting large amounts of
unlabelled data (available since PPG-sensors can be easily
worn during everyday life, while acquiring ground truth is
more difficult) and personalisation approaches, as defined
in similar domains [14].
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