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ABSTRACT
Many current human-robot interactive systems tend to use accu-
rate and fast – but also costly – actuators and tracking systems to
establish working prototypes that are safe to use and deploy for
user studies. This paper presents an embedded framework to build
a desktop space for human-robot interaction, using an open-source
robot arm, as well as two RGB cameras connected to a Raspberry
Pi-based controller that allow a fast yet low-cost object tracking and
manipulation in 3D. We show in our evaluations that this facilitates
prototyping a number of systems in which user and robot arm can
commonly interact with physical objects.
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1 INTRODUCTION
Human-centered robotics and human-robot interaction as research
fields have emerged in the past decades in which human users and
robots coexist in the same space, both able to manipulate the same
physical objects that reside in it. This paper presents an embed-
ded framework for desk-based human-robot interaction to allow
robotics enthusiasts and researchers to quickly develop low-cost
and rapid prototypes of functioning robot arms, to test out project
ideas, for instance for educational purposes or before a full scale
implementation. Our framework consists out of hardware com-
ponents that are widely available, low-cost, easy to replace, and
driven by an embedded system that holds all software to track and
actuate nearby objects. Software-wise, we mainly use the existing
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frameworks for computer vision tasks such as detecting objects
and tracking them in 3D, interfacing and driving the robot arm.

Figure 1: Overview of the tracking and actuation parts of our
prototyping framework: Two miniature web cameras pro-
vide their frames via USB to the Raspberry Pi 4B, which via
OpenCV libraries uses these to perform 3D object tracking.
Tracked objects are then merged in the robot’s coordinate
systems via ROS and can be manipulated by changing the
robot arm’s joints, which are sent to a microcontroller that
maps the joint angles to pulse width modulation (PWM).

Prototyping frameworks have been proposed for several inter-
action paradigms. For human-robot interactive systems, however,
we argue in this paper that especially a low-barrier and low-cost
prototyping framework that allows development of responsive in-
teractive systems is still missing. We focus on the design space
where tracking of objects is achieved through fiducial markers
and a setup with two simple USB cameras, and where actuation is
achieved through an open-source robot arm with its joints com-
manded locally via inverse kinematics. By abstracting from the
underlying functionality of openCV and ROS in particular, and by
introducing methods that speed up tracking and inverse kinematics
on a system with limited resources, we thus contribute in this paper
a framework to rapidly build low-cost but fast systems that allow

https://doi.org/10.1145/3410530.3414323
https://doi.org/10.1145/3410530.3414323


UbiComp/ISWC ’20 Adjunct, September 12–16, 2020, Virtual Event, Mexico Odoemelem and Van Laerhoven

a robot arm and users to interact with objects on a desktop-based
area. In the following sections, we situate this work among related
research in this area, before we present our framework.

2 RELATEDWORK
Early work in this research area included prototypes such as [5],
which focused on guiding and teaching robot tasks through an
extended digital desk where separated robot and human were made
aware of each other through an augmented reality projector display
and tracking system. Safety of the human is also an important aspect
in such scenarios, as the larger the robot arms get, the higher the
chance that a collision with the robot can hurt the user. Approaches
to achieve this with industrial robot arms include estimation of
external forces and saturation of joint control torques to keep the
effective external forces under safety level [6].

Of the many challenges in such a setting, one is how users can
program and control robot arms intuitively, with approaches rang-
ing from touch-based programming [1] to using on-robot sensors.
Close to our approach are works such as Synthé [3], allowing de-
signers to bodystorm, or act out demonstrations of a robot-human
interaction, automatically capturing and translating these into pro-
totypes using program synthesis. Such systems tend to be fast
and can deal with complex (e.g., humanoid) robots, but require ex-
pensive robots and sensor equipment. At the same time, powerful
software libraries and frameworks such as openCV and ROS do
exist, but are harder to use in rapid prototyping [4].

3 ARCHITECTURE
Our framework essentially focuses on a set of python classes, but
in this section we first describe the hardware to illustrate the use
of limited and affordable hardware components. The hardware and
software architecture and methodology in a nutshell are shown in
Figure 1.

3.1 Hardware components
The hardware cost of our prototype including the stereo-camera
setup is under $250, the components include:

An open-source 3D-printed Robot arm. For the robot arm,
we use an open-source design 3-DOF RRR robot arm, which can
be 3D-printed using STL files available on 1. We used 3 MG996R
servo motors capable of 180 deg rotation and command the motors
using the TI MSP430FR5969 microcontroller through pulse width
modulation. This design results in an extensible, re-programmable,
and low-cost robot arm that costs about $70.

Raspberry Pi-based mainmodule. The Raspberry Pi 4 Model
B which costs about $35 has 4 Gigabyte LPDDR4 RAM, and is ca-
pable of H.265 (HEVC) hardware decoding (up to 4Kp60). It has 4
USB port which are in our framework required for the two USB
cameras used for stereo vision, as well as the USB-connected TI
MSP430FR5969 microcontroller. More technical details on Rasp-
berry Pi 4 Model B specifications can be found here 2.

Stereo-camera. To achieve object triangulation by stereo imag-
ing, two Logitech c525 webcams (costs about $60 each) with 69°

1https://howtomechatronics.com/download/arduino-robot-arm-stl-files/
2https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2711/
rpi_DATA_2711_1p0_preliminary.pdf

Field of view (FoV) are used to implement a cost-effective stereo
camera in normal case. To reduce errors in the configuration, stereo
calibration and rectification were done, this will be discussed in
more details in the following section describing the software com-
ponents. The intrinsic and extrinsic properties of the stereo camera
from calibration and rectification were obtained, after which stereo
triangulation [2] is performed. The depth Z of an object can be
found if we know the disparity 𝑑 =

(
𝑥𝑙 − 𝑥𝑟

)
, where 𝑥𝑙 and 𝑥𝑟

are the horizontal position of the object point P in left and in right
image planes respectively, focal length f and the horizontal trans-
lation T between the two cameras are as show in equation (1). To
understand the fundamentals of stereo vision, the photogramme-
try course by Cyrill Stachniss on 3, is a recommended learning
resource.

𝑇 −
(
𝑥𝑙 − 𝑥𝑟

)
𝑍 − 𝑓

=
𝑇

𝑍
⇒ 𝑍 =

𝑓 𝑇

𝑥𝑙 − 𝑥𝑟
(1)

MSP430FR5969microcontroller.The last components required
for our system is a Texas Instruments MSP430 FR5969 LaunchPad
(costs about $16), which is used as a lightweight UART to PWM
connection with an efficient microcontroller to control the robot
arm in software from the Raspberry Pi module.

3.2 Software components
For the tracking of nearby objects, the image frames from the stereo
camera are read by the Raspberry Pi; Both cameras are attached
via the USB ports. Using the system source code (depicted in green
in Figure 1) written in Python3, the Raspberry Pi processes these
images to obtain tracking data (3D position of any fiducial markers
present in both cameras’ frames). The processed image frames
and camera properties control trackbar are displayed on the user
interface of our framework, which can be accessed by a connected
(touch) display, keyboard and mouse, or via a graphical secure shell
(SSH) connection. A ROS publisher node is then used to publish the
tracking data, while a ROS subscriber node receives this data, which
is then converted into joint angles for the robot arm using inverse
kinematics. The joint angles are then sent to the TI MSP430FR5969
micro-controller that is attached to the Raspberry Pi unit through
UART. On this microcontroller, servoPWM is our Embedded C
programmed software that uses the communicated joint angles, a
lookup table and local hardware timers to generate corresponding
pulse width modulation (PWM) signals. These PWM signals are
then sent to the robot arm servo motors to command joint positions,
so that the end effector can reach the 3D position of any of the
fiducial markers identified. This process ensures that the robot arm
is able to track the 3D position of objects with fiducial markers
within its workspace.

camV4L: Camera Video for Linux. This module defines the
camera image and contains methods to acquire the camera images,
specifying their respective resolutions, and to set the camera prop-
erties (exposure, contrast, etc.). In our setup, the camera resolutions
were both set to (544, 288). The camera intrinsic and extrinsic pa-
rameters from calibration are defined here as class attributes, and
are used to get rectification maps and projection matrices. A further
method allows reading the new camera frames if both cameras are

3https://www.youtube.com/watch?v=_mOG_lpPnpY
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Figure 2: The calibration process is done with a chessboard
image, here is the output of the process where the corners
in one of the two images are found.

available. It uses rectification maps to rectify the images using the
openCV cv2.remap() method, and then returns the rectified images
to the calling function.

camCalib: Camera Calibration. Camera calibration is based
on the methods described in [2]. For camera calibration, at least
10 images of a 7-by-8 or larger chessboard are required accord-
ing to [2]. In our hardware setting, at least 50 chessboard images
per camera in different orientations and positions were needed
for stereo calibration and rectification: A snapShot() function is
used to take chessboard images (a 7-by-9 chessboard image was
used here) and save them into a file, to be later used for camera
calibration. The camera calibration process begins with finding
the chessboard corners on the save chessboard images, using the
openCV cv2.findChessboardCorners() function, and then append-
ing the corresponding image points (chessboard corners in pixels
coordinate found) and object points (physical coordinates of each
chessboard corner) into a list. Image and object points are then
passed to cv2.calibrateCamera(), to obtain the set of camera intrin-
sic and extrinsic parameters, by finding the solution to:

𝑞 = 𝑠𝑀𝑊𝑄 (2)

where

𝑞 =


𝑥

𝑦

1


𝑠𝑀𝑊𝑄 = 𝑠


𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1



𝑟11 𝑟12 𝑟13 𝑡𝑥
𝑟21 𝑟22 𝑟23 𝑡𝑦
𝑟31 𝑟32 𝑟33 𝑡𝑧



𝑋

𝑌

𝑍

1


𝑞 is the image pixels coordinate system , 𝑠 is a non-zero scale

factor, 𝑀 holds the intrinsic camera parameters (the focal length
𝑓𝑥 ,𝑓𝑦 and position displacements 𝑐𝑥 ,𝑐𝑦 away from the optic axis).
𝑊 =

[
𝑅𝑧 (𝜃𝑧)𝑅𝑦 (𝜃𝑦)𝑅𝑥 (𝜃𝑥 ) | t

]
holds the extrinsic camera pa-

rameters: the rotation and translation of the object relative to the

camera coordinate system. 𝑄 is the world/scene coordinate system,
and𝑊𝑄 holds the camera coordinate system. cv2.calibrateCamera()
also return the radial and tangential distortions of the cameras
which are necessary parameters for undistorted rectification.

The stereo camera projection 𝑃 (contains the rectified camera
matrices and the rotation(𝑅) and translation(𝑆) between left and
right cameras) and reprojection matrices 𝐴, are then calculated
using cv2.stereoRectify(). Given a 3D point in homogeneous coor-
dinate, a 2D point in homogeneous coordinate can be calculated as
shown in equation (3), where the image coordinate is (𝑥/𝑤,𝑦/𝑤).
Similarly, given 2D homogeneous point and its associated dispar-
ity 𝑑 , we get the 3D homogeneous point as shown in the second
equation (3), where the 3D point is (𝑋/𝑊,𝑌/𝑊,𝑍/𝑊 ).


𝑥

𝑦

𝑤

 = 𝑃


𝑥

𝑦

𝑍

1

 ,


𝑋

𝑌

𝑍

𝑊

 = 𝐴


𝑥

𝑦

𝑑

1

 (3)

The result of the camera calibration and stereo rectification then
allows detection and tracking tasks.

camDT: Camera Detect and Track. In this module, we pro-
vide a function to simultaneously detect and track fiducial mark-
ers, using 𝑎𝑟𝑐𝑢𝑜𝐼𝐷 as the ID of the fiducial marker (ArUCo), a
tracker id 𝑡𝑟𝑎𝑐𝑡𝐼𝐷 , taking flags to signify whether the cameras
have new frames available, and the left and right projection ma-
trices. The tracking itself is implemented using the user-selected
openCV tracker. In order to improve accuracy of the tracker, espe-
cially with more than one fiducial marker on the scene, and also
to increase the processing and tracking speed, the frames are first
copied to a temporary variables and these are then cropped before
they are used in the tracking process. These bounding boxes with
respect to the main frame then lead to a tracking frame, which is
obtained by adding a small margin to the bounding box frame to
allow for objects’ displacement in the next frame.

If no object (through its fiducial marker) is found in the last
iteration because of tracker failure, the original frames are used
to detect the current position. Otherwise, the tracking frame is
passed to the tracker which then returns the bounding box and
tracking frames. Some trackers can erroneously return values after
the fiducial marker has been removed from the scene. To avoid
this error, the bounding box returned by the tracker is periodically
examined by checking the number of contours and the total area of
the contours within the returned bounding box, after removing the
largest contour, which is usually the contour of the frame’s bound-
ary. We found that depending on your test conditions a bounding
box with few contours (typically < 5) and small area (typically
<< 100) allows for a quick test to see whether the fiducial marker
has been removed from the scene. The detected objects’ midpoints
in pixel coordinates, together with the projection matrices, are then
passed to the openCV cv2.triangulatePoints() method, which re-
turns a homogeneous coordinate that represents the world position
coordinate (𝑋,𝑌, 𝑍 ) of the fiducial marker’s midpoint. Next, the
bounding box and midpoint position are marked so that they can
be displayed on the user interface. The marked frames, bounding
boxes and the objects’ midpoints in world position coordinate (in
cm) are returned.
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camDataPub: Camera Data Publisher In this module, a cam-
era image is created to receive the rectified image frames and com-
bined with cv2.createTrackbar() to enable users to control the cam-
era properties such as contrasts, exposure, etc. dynamically. This
module also keeps track of all objects that are detected through
their fiducial markers that need to be identified before the tracking
is triggered. Users can here get access to processed image frames,
the bounding boxes, and the midpoint positions (in cm) of objects
in world coordinates. The frames per second (fps) and processed
images are displayed on the user interface, and then the ROS node
”𝑡𝑎𝑙𝑘𝑒𝑟” is used to publish the position data on the topic ”𝑐ℎ𝑎𝑡𝑡𝑒𝑟”.

camDataSub : Camera Data Subscriber This module is re-
sponsible for the inverse kinematics, which allows all the robot’s
joint angles to be calculated, given the position in 3D space of the
robot’s end effector. The end effector position (3D position of the
fiducial marker (𝑖𝑥, 𝑖𝑦, 𝐸𝑓 𝐻 )), we obtain (𝑥,𝑦, 𝐸𝐹𝐻0), where 𝐸𝐹𝐻0
is the end effector height after subtracting the height of the robot
arm base. The orientation of the end effector 𝜓 is calculated and
implemented (equations (4) - (7)) using the end effector position.
Then by inverse kinematics, the joint angles are calculated and
implemented using the orientation and position of the end effector.

𝑠 =

√
𝑥2 + 𝑦2 (4)

𝑟 =

√
𝑥2 + 𝑦2 + 𝐸𝐹𝐻02 (5)

𝜙 = acos
(
𝑟2 + 𝐿32 − 𝐿22

2𝑟𝐿3

)
+ atan2

(
𝐿1 − 𝐸𝐹𝐻0

𝑠

)
(6)

𝜓 = 360° − 𝜙 (7)
A second function that is provided here is the ROS node ”𝑙𝑖𝑠𝑡𝑒𝑛𝑒𝑟”,

which subscribes to the topic ”𝑐ℎ𝑎𝑡𝑡𝑒𝑟”, so that objects’ positions
that are published by the ”𝑡𝑎𝑙𝑘𝑒𝑟” node on topic ”𝑐ℎ𝑎𝑡𝑡𝑒𝑟” are re-
ceived here. The received positions are then passed to the above-
described inverse kinematics function, which returns the joint an-
gles (𝜃1, 𝜃2, 𝜃3). These joint angles are then sent to TIMSP430FR5969
through the UART as bytes; The byte preambles 251,252 and 253
are used to indicate that a joint angle data belongs to joint 1 (for
link L1), joint 2 and joint 3 respectively.

servoPWM: servoPWM is the Embedded C program that runs
on TI MSP430FR5969 to send PWM signals corresponding to com-
manded joint angles to the robot arm servo motors. It receives the
joint angles through UART from 𝑐𝑎𝑚𝐷𝑎𝑡𝑎𝑆𝑢𝑏. The PWM period is
20ms or 50 Hz. The joint angle (range is 0 to 180°) is then used as
index for a look up table. The look-up table contains correspond-
ing values 0(900 timer counts) to 180°(2700 timer counts), with an
increment of 10 counts for each integer degree, which is the num-
ber of timer counts for Timer A1 and B0 to send PWM signals to
P1.3 (joint 1 for link L1), P1.4 (joint 2) and P1.5(joint 3). Note that
an appropriate external power supply is used to power the servo
motors.

4 CASE STUDY
By using the architecture as described above, it is now possible to
quickly create interactive behaviours by interfacing with the five
modules (implemented as python classes) present in the Raspberry

Pi module, abstracting from off the underlying openCV and ROS
functionality. The following case study was prototyped in a short
amount of time and shows how our framework could be used, and
reports on how fast and accurate such built systems can be. The aim
of this example is to detect several stages in the typical ball-and-
cups game, which requires to track a hidden block as it is covered
by a cup and switched with another cup by the user. The goal of the
game is for the robot arm to identify the cup that covers the block,
by pointing at it, and then track the cup reliably, independent of
its orientation until the user stops moving. The attached video on
4, shows the main components and the robot arm in action. For
tracking in this scenario, which assumes that 2 different objects
need to be tracked in the same scene simultaneously, the image
processing time takes typically between 50ms to 33ms (allowing
a processing speed of 20 to 30 frames per second). Note that the
processing time will increase as higher numbers of objects are
introduced in the scene, but that the reach of the robot arm and the
fact that the cameras were installed about 50 cm above the desk
resulted in a shared work space of about 40 by 50 cm.

5 CONCLUSIONS
Creating interactive systems where both robots and users can ma-
nipulate objects on a common desktop space is currently not trivial.
Common hurdles include the high costs of the high-fidelity tracking
and precise control of off-the-shelf robot arms, as well as a lack of a
unifying software framework that ties this all together. This paper
has presented our open-source prototyping framework ( full system
description and source code on 5), which provides a combination
of a simplified interface to a set of open-source software tools, with
efficient implementations that allow tracking and inverse kinemat-
ics on a Raspberry Pi system with limited resources. This allows
our prototyping framework to be run on low-cost hardware compo-
nents, leading to a less precise yet fast, responsive, and affordable
way of prototyping. Recommendations to improve this open-source
framework includes robust; kinematics feedback control, motion
planning, low-cost 3D printable robot-arm/end effectors, tracker
filter, and low-cost stereocamera design.
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