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ABSTRACT
The automatic detection of hand washing has numerous applica-

tions in work and medical environments. Checking the compliance

with hygiene standard in hospitals, or personal hygiene support

are examples thereof. However, hand-washing can also become

pathological and is a symptom of the obsessive-compulsive disor-

der (OCD) spectrum. Individuals suffering from OCD are compelled

to wash their hands often to the extent of harming themselves. Au-

tomatically spotting compulsive hand-washing throughout the day

can assist therapeutic interventions by augmenting the on-going

monitoring of compulsions. Based on this the therapist can gauge

the efficacy of the chosen interventions. We present WashSpot, a

neural-network based method to spot (compulsive) hand-washing
on commercially available Smartwatches using inertial motion sen-

sor data.
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•Computingmethodologies→Neural networks; •Applied com-
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1 INTRODUCTION
Obsessive compulsive disorder (OCD) is a mental disorder that af-

fects about 1-3% of humans during their life [17, 5]. OCD shows

itself in the form of intrusive thoughts that can lead to obsession

and the carrying out of compulsive behavior. There are multiple

subgroups of obsessions and compulsions, including contamination

concerns, symmetry and precision concerns, saving concerns and

more [15]. These concerns lead to respective compulsive behavior:

Symmetry and precision concerns lead to arranging and ordering,

saving concerns lead to hoarding and contamination concerns can

lead to excessive washing, bathing and showering, including com-

pulsive hand washing. By spotting those automatically diary-like

entries for later revision with a therapist could be created or even

simple interventions (e.g. issuing a warning, vibration or sound)

could be provided, if the detection delay is small.

Previously published methods for the detection of hand wash-

ing or its steps rely on a multitude of different machine learning

algorithms. One study was able to recognize 13 steps of a hand

washing procedure on wrist motion data with an accuracy of 85 %

with a sliding window feature-based hidden markov model (HMM)

and running a continuous recognition [8]. Sensor wristbands can

be used to assess the user’s compliance with given hand washing

hygiene guidelines by detecting different steps of a scripted hand

washing routine[19]. By using an LSTM-based neural network, this

approach can be extended to prompting the user, if they confuse

the order of the steps or forget one of the steps [4]. The hand wash-

ing step detection technology can also be used to support elderly

patients with dementia. More complicated hybrid network archi-

tectures can be used to improve single step detection or to rate

the quality of hand washing procedures [20, 12]. An approach for

separating hand-washing from possibly confounding activities, for

example brushing one’s teeth, is out-of-distribution detection [13].

Our approach is based on the application of neural networks

for human activity recognition (HAR). Frequently used architec-

tures reach from fully connected networks [13] over convolutional

neural networks (CNNs) [21], long short term memory (LSTM)

with or without attention [22] to a combination of CNN and LSTM

layers, DeepConvLSTM with one or two LSTM layers [9, 3]. Re-

cently, DeepConvLSTM combined with an attention mechanism

https://doi.org/10.1145/3544793.3563428
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(DeepConvLSTM-A) was shown to perform better than plain Deep-

ConvLSTM on some data sets [14].

Related work is mostly concerned with WHO-compliant hand-

washing, however enacted compulsive and non-compulsive hand-

washing can be separated [18] with F1 score from 0.65-0.87. We

extend this approach by showing that (enacted compulsive) hand-

washing can be successfully spotted in all-day wrist motion record-

ings, and that compulsive and non-compulsive hand-washing can

be separated. WashSpot spots (enacted compulsive) hand washing

in inertial sensor data typically found in Smartwatches. It provides

an online detection of hand washing to supplement therapy for

patients suffering from cleanliness OCD. We contribute:

(1) a method to spot and distinguish enacted compulsive and

non-compulsive hand-washing in all-day inertial wrist mo-

tion recordings.

(2) a deep learning architecturewhich can be executed on resource-

constrained devices like commercial Smartwatches.

(3) an outline of how to use online-detection of hand-washing

for semi-automatic labeling of real-world data.

2 SPOTTING HAND-WASHING
We compared six artificial neural network architectures: Fully Con-

nected (FC), convolutional neural network (CNN), Long-Short-

Term-Memory (LSTM), LSTM with attention (LSTM-A), DeepCon-

vLSTM, and DeepConvLSTM with attention (DeepConvLSTM-A).

The respective architectures are displayed in Fig. 1, and are similar

to the architectures used in other papers [13, 21, 22, 9, 3, 14]. All neu-

ral networks use ReLU as activation function and were trained with

ADAM [6] in PyTorch [10], using early-stopping with a validation

set consisting of 15 % of the training data.

In order to spot hand washing in real-world activity, a neural

network was then exported into a smart watch application which

is able to run on any recent Android-based Smartwatch. The watch

continuously records the data from the integrated inertial mea-

surement unit (IMU) at 50Hz. To filter out the most basic idle case

of “no movement” a threshold 𝑣𝑖𝑑𝑙𝑒 is applied to all sensor values.

The neural network is only run when this threshold is exceeded.

Then, a forward pass of the neural network model is done with

the data of the window. This thresholding ensures that the energy

consumption of the application is kept as low as possible, as even a

forward pass is computationally expensive. If the Smartwatch de-

tects a hand washing activity in multiple consecutive windows (3s),
a notification is sent. The Smartwatch only sends this notification

if the mean of the last 20 predictions is higher than an empirically

set threshold 𝑡𝑛𝑜𝑡𝑖 𝑓 𝑦 . This ensures that single outliers do not trig-

ger user notifications. The user is then prompted to confirm the

correctness of the classification ("Did you just wash your hands?")
and subsequently also queried about the type of hand wash, i.e.

whether it was compulsive or not and to rate their current stress

level. The application can thus collect new data for future research

with semi-automatic and interactive labeling. Fig. 2 shows the exe-

cution flow of the classification loop that is continuously running

on the Smartwatch.
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Figure 1: Network Architectures. DeepConvLSTM and
DeepConvLSTM-A are amongst the best performing models
currently used in other HAR tasks.
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Figure 2: Flow diagram of the smart watch classification loop.
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Table 1: Data sets and activities contained in our combined
data set. The first three data sets stem from our group’s col-
lection, the rest are external publicly available data sets. The
collected data contains routine hand washing (HW), enacted
compulsive hand washing (HW-C) and other activities (Null).

Dataset name Contained activities

OCDEnact (compulsive) handwashing 50Hz

ConfoundWash confounding and washing 50Hz

All-Day activities of daily living 50Hz

WISDM [7] movement 20Hz

RealWorld [16] movement 50Hz

REALDISP [2] movement & exercising 50Hz

PAMAP2 [11] movement, sports, house-

hold chores, desk work

100Hz

Activity Amount of windows (3s) Share

Null 178480 91.9 %

HW 5513 2.8 %

HW-C 10251 5.3 %

3 EVALUATION
In order to train the artificial neural network models, a collection

of data sets was created. For handwashing we used data from [18].

This includes data collected under ethical approval of the University

of Basel with data from enacted OCD hand-washes, of confounding

activities (brushing teeth, peeling carrots, and dish washing), and

all-day recordings of daily activities. For enacted compulsive hand-

washing, participants were asked to follow a pre-defined protocol

stemming from the observational experiences of clinically treated

patients. In total five differents hand-washing protocols were exe-

cuted by 21 participants (cf. [18]). Added to those data sets, we used

publicly available data sets of human activities such as activities

of daily living and sports. All collected data sets were re-sampled

to 50Hz, if necessary. Only data from wrist worn IMUs was used,

namely the accelerometer and gyroscope data (both 3-axes). The

description of the used data sets is shown in Table 1.

The final, combined, data set used to train WashSpot contains a

total of 14.4 million 6-dimensional data points. With these 14.4 mil-

lion data points we created windows, each of length 150 samples (3s)

with 50% overlap. This left us with 194,000 windows. Out of those

windows, 15,750 (8, 2%) contained hand washing, 178,500 (91, 8%)

were other activities or idle (Null). Out of the 15,750 hand wash-

ing windows, 10,250 (65%) were enacted compulsive hand washing

windows (HW-C), 5500 (35%) were non compulsive washing (HW).

To avoid a bias towards themore frequent classes, we used a class-

weighted version of the cross-entropy loss function. The weights

passed to PyTorch’s implementation of the cross-entropy loss were

calculated as follows:

𝑤𝑐𝑙𝑎𝑠𝑠 =
𝑛𝑡𝑜𝑡𝑎𝑙

𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠 · 𝑛𝑐𝑙𝑎𝑠𝑠
(1)

Here, 𝑛𝑡𝑜𝑡𝑎𝑙 is the total amount of sample windows in the training

set,𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 3 and𝑛𝑐𝑙𝑎𝑠𝑠 is the amount of windows of each specific

class. Multiplying the loss of each forward pass with the weight of

its true label’s class weight balances each classes’ influence on the

model parameter update. The formulated classification problem is

to spot hand washing (HW) and enacted compulsive hand washing

(HW-C) separately and distinguish both from other activities (Null).

The data was split into a train set (85% of recordings) and a test set

(15% of recordings). Additionally we made sure that no participant

appeared in both training and test data. This ensures that the model

generalizes independently of personal motion patterns.

To evaluate the trained models, they were applied to the test set

and evaluated with different metrics. The harmonic mean of recall

and precision, i.e. the F1 score is commonly used to evaluate bi-

nary prediction tasks. For our three-class classification problem we

therefore report the F1 score multi [22]. F1 score multi is calculated

by taking the mean over all classes C, of the F1 scores if we treat
the class C𝑖 , 𝑖 ∈ [0, 1, 2] as the positive class, and the remaining

classes as the negative class: 𝐹1 𝑠𝑐𝑜𝑟𝑒 𝑚𝑢𝑙𝑡𝑖 = 1

3
·∑2

𝑖=0 𝐹1 𝑠𝑐𝑜𝑟𝑒 (C𝑖 ).
We also report the mean diagonal value (MDV) of the confusion

matrix. Both these scores indicate the probability of spotting both

enacted compulsive and non-compulsive hand-washing.

The best model (DeepConv-LSTM-A) was converted to ONNX

[1] runtime (ORT) format using torch.onnx for execution on a smart

watch, namely an Android-based TicWatch. The ORT model is

around 1𝑀𝐵 in size and no further measures were required in

order to run it with ONNX’s Android runtime. It was able to run

in real-time, to predict hand washing and to notify the user of the

detection. The user was subsequently queried whether detection

was correct. The battery of the smart watch lasted through an entire

day of recording and only had to be charged at night.

4 RESULTS
The different model architectures were executed on the test set

which contains recordings from unseen participants. The perfor-

mance of the models was then assessed by comparing the respective

F1 scores and the confusion matrices. All models tested reached

a performance level in the range of 0.62 to 0.69 (F1 score multi)

and 0.624 to 0.712 (mean diagonal value (MDV)), as reported in

Table 2. In line with results found in literature, the DeepConvLSTM

variants performed best with an F1 score of 0.692 and MDV of 0.712

for the model with the self-attention mechanism and an F1 score

of 0.676 and MDV of 0.701 for the model without it. The attention

mechanism also leads to improved performance for the LSTM based

network without convolutional layers.

The confusion matrices for each classifier are shown in Fig. 3.

The highest accuracies could be reached for the HW-C class, with

values ranging from 0.72% (CNN) up to 0.88% (LSTM). Similarly,

the accuracies achieved for the HW class were high (from 70 % (FC)

up to 79% (DeepConvLSTM)) with exception of the CNN (51%).

However, the accuracy for the Null class was low, ranging from 33 %

(LSTM) to 64% (CNN). We found that most incorrect predictions

made for Null samples were attributed to the HW class by the

models (around 30 %) versus only around 20 % for HW-C. The reason

for this may be that some of the activities in the null class were

designed to be confounding, i.e. washing a cup, peeling a carrot or

brushing ones teeth. The HW samples were most confused with

HW-C samples (around 18 %) versus 10 % for the Null class. HW-C

samples were misclassified into the Null class (10 %), although the
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Table 2: Scores of (Enacted Compulsive) Hand Washing De-
tection. F1 score is for combined hand-washing detection,
mean diagonal value (MDV) refers to the mean of the diago-
nal of the confusion matrix. The deep convolutional LSTM
with attention performs best.

modelclass F1 score multi MDV

FC 0.647 0.664

CNN 0.621 0.624

LSTM 0.629 0.665

LSTM-A 0.665 0.679

DeepConvLSTM 0.676 0.701

DeepConvLSTM-A 0.692 0.712

Null

HW

HW-C

Tr
ue

 la
be

l

0.51 0.31 0.17

0.087 0.7 0.21

0.12 0.1 0.78

FC

0.33 0.41 0.25

0.047 0.78 0.17

0.061 0.056 0.88
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0.46 0.34 0.2

0.054 0.79 0.16
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ue
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l
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Figure 3: ConfusionMatrices for (Enacted Compulsive) Hand
Washing Classification. DeepConvLSTM-A performs best,
followed by DeepConvLSTM. The HW and HW-C classes
were predicted with high accuracy. The Null class was most
confused with routine hand washing.

difference to HW (8%) was smaller. These trends were observed

for the majority of models. Overall this means that hand washing

and enacted compulsive hand washing were detected with a high

sensitivity. However, lower scores for the Null class indicate a lower

specificity than desired.

Based on the reported performance measures, DeepConvLSTM-

A was selected to be used in the WashSpot smart watch application.

For our online detection of hand washing we combined the HW-C

and HW classes into a new positive class HW-ALL, leaving the

Null class untouched. The spotting of activities from any of the

categories of hand washing can be done with the same 3-class pre-

trained model, by assigning the HW and HW-C class predictions

to HW-ALL. A slightly better performance could likely be achieved

by directly training a binary classification model instead.

5 DISCUSSION
We propose WashSpot, a system to detect (compulsive) hand wash-

ing from inertial sensors typically found in current smartwatches.

Our system can be installed on current Android smart watches

to execute real-time detection of hand washing. We explain the

relevance of the proposition as a supplement in the therapy for

patients suffering from cleanliness OCD. Besides the main goal of

spotting hand washing for therapeutic purposes, the system can aid

at collecting new inertial measurement data for further increasing

the performance of future models.

Our system’s reported prediction accuracy is lower than in hand

washing (step) detection work in literature. However, we argue

that the problem it tackles is harder: Instead of detecting a step

out of a fixed script, or detecting hand washing conducted in a

constrained style, we try to detect all kinds of hand washing and

distinguish it from all kinds of activities that can be found in other

data sets for HAR. The Null class of irrelevant activities also con-

tained confounding activities, which increases the difficulty further.

To improve the performance on the Null class, even more data of

confounding activities that are similar to hand washing could be

used to train the model. Improvements of the real world perceived

performance are also likely achieved by the thresholding on past

prediction values. By only sending a notification if a consecutive

window of 10s was classified mostly as hand washing, the false

positive rate is reduced.

Unlike other systems to spot hand washing, WashSpot does not

rely on external cues to spot a hand washing procedure conducted

by the user. While external cues such as proximity to a Bluetooth

beacon or a camera mounted to a sink could improve the perfor-

mance, they also limit the applicability of the respective solutions

to the spaces in which such systems are present. As the compulsive

hand washing can be conducted anywhere, it is critical that our

system abstains from dependencies to external cues.

Future work in this area should focus on obtaining sensor data

of real-world compulsive hand washing patterns by conducting

a study with patients suffering from cleanliness OCD. WashSpot

together with models trained on the then collected data will likely

be able to supplement the treatment of the patients, which would

need to be evaluated in a clinical study.

6 CONCLUSION
We presented WashSpot, a system to spot compulsive and non-

compulsive hand-washing on commercially available Smartwatches.

The system was tested on enacted compulsive hand-washes com-

bined with a dataset of all-day recordings, a dataset of possibly

confounding activities and several publicly available wrist-motion

datasets, which cover a total of 80h, of which ∼ 7h were hand-

washing. We estimated the prediction performance by testing on

15 % of this data, on which the DeepConvLSTM-A model achieves

an F1-score 69.2 % for spotting (compulsive) hand-washes. Running

this model on a commercial Smartwatch (TicWatch E2, 310mAh)

results in a runtime of 8h. As such the proposed smart watch appli-

cation can supplement therapy of patients suffering from OCD by

spotting hand washing activities.
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