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ABSTRACT
Known as the Hawthorne Effect, studies have shown that partici-
pants alter their behavior and execution of activities in response
to being observed. With researchers from a multitude of human-
centered studies knowing of the existence of the said effect, quantita-
tive studies investigating the neutrality and quality of data gathered
in monitored versus unmonitored setups, particularly in the con-
text of Human Activity Recognition (HAR), remain largely under-
explored. With the development of tracking devices providing the
possibility of carrying out less invasive observation of participants’
conduct, this study provides a data-driven approach to measure the
effects of observation on participants’ execution of five workout-
based activities. Using both classical feature analysis and deep
learning-based methods we analyze the accelerometer data of 10
participants, showing that a different degree of observation only
marginally influences captured patterns and predictive performance
of classification algorithms. Although our findings do not dismiss
the existence of the Hawthorne Effect, it does challenge the prevail-
ing notion of the applicability of laboratory compared to in-the-wild
recorded data. The dataset and code to reproduce our experiments
are available via https://github.com/mariusbock/hawthorne_har.
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1 INTRODUCTION
Body-worn sensor systems bare great potential in analyzing our
daily activities with minimal intrusion, yielding various applica-
tions from the provision of medical support to supporting complex
work processes [3]. With (deep) neural networks representing the
state-of-the-art technology for the automatic analysis of such wear-
able data, a bottleneck becomes the correct annotation of data for
the underlying training. Due to the fact that inertial data is diffi-
cult to interpret in hindsight without any additional context, most
publicly available datasets remain captured in controlled, video-
recorded environments with researchers being in close proximity
to study participants.

The Hawthorne Effect, originally discovered in 1958 [9], de-
scribes the phenomenon that humans alter their behavior and ex-
ecution of activities in response to being observed. The phenom-
enon’s discovery has led to numerous studies trying to measure
the said effect in clinical trials [1, 10, 12, 15, 16, 19], and, more tar-
geted toward physical activities, showed that the effects can be
quantified, for instance with gait parameters like step length and
cadence of gaits [19]. With researchers from a multitude of human-
centered studies being aware of the existence of such an effect, a
data-driven study of the phenomenon and its potential effects re-
main largely under-explored in the community of Human Activity
Recognition (HAR). Given that the performance and applicability of
learning algorithms, such as neural networks, in real-world scenar-
ios heavily depend on the representativeness of the training data,
our study aims to investigate whether the prominent observation
of participants during data collection introduces biases and results
in measurable and altered executions of activities which, in turn,
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may potentially lead to less effective and less generalized networks.
Inspired by the works of Vickers et al. [19], our paper provides a
data-centric analysis of measuring a possible Hawthorne Effect on
a variety of fitness activities through the modality of wrist-worn in-
ertial sensor data. This is done by explicitly letting the participants
be observed through cameras and/or the researchers. Contributions
of our paper are three-fold:

(1) We designed a HAR experiment where volunteers perform
a set of activities under three observation settings: 1) fully-
observed (video-recorded + monitoring by researchers), 2)
semi-observed (video-recorded + no monitoring), and 3) non-
observed (no video recording + no monitoring).

(2) We collected data from 10 participants performing 5 different
activities, jumping, walking, jogging in place, sit-ups, and
jumping jacks over several days.

(3) We perform both feature analysis and investigation of changes
in the predictive performance of a deep learning classifier
[2] based on the type of observation applied during valida-
tion as well as its capabilities to distinguish between each
participant’s session.

2 RELATEDWORK
Human Activity Recognition typically relies on participants being
monitored via wearable sensors, making them consistently aware
of being observed. However, these circumstances may have intro-
duced a behavior bias [20] into publicly available datasets. This bias
manifests as changes in behavior when study participants are aware
of being monitored by another person or a video recording system
[7] and is also known as the Hawthorne Effect. The fundamental
research of which the Hawthorne effect originated, was conducted
between 1924 and 1927 as part of an investigation of whether the
productivity of workers of the Hawthorne Western Electric plant
could be increased by a change in lighting conditions [11]. With
later studies criticizing the research methodology [4], Landsberger
concluded in 1958 [9] that the increase in productivity was to be
attributed to the workers being aware that they were monitored and
not the change in working conditions. The observed phenomenon,
i.e. the alteration of behavior whenever participants are aware that
they are being monitored, was later then primed as the Hawthorne
Effect. In the context of HAR experiments, the Hawthorne Effect
suggests that participants’ awareness of being monitored can poten-
tially affect the applicability and generalization of trained activity
recognition systems. Knowing they are being observed and activ-
ities are being recorded, participants might result in modifying
their movements, behaviors, and/ or daily routines, leading to a
deviation from a natural execution of activities. This alteration can
introduce biases and inaccuracies in the data collected for HAR
experiments, making it challenging to develop reliable and scal-
able activity recognition systems [4]. To mitigate the Hawthorne
Effect in HAR experiments, researchers often opt for minimizing
participants’ awareness of being monitored. By employing discrete
sensing techniques, such as using a minimalistic setup of wear-
able devices [17] or ambient sensors [13], they can collect activity
data without participants constantly focusing on the monitoring
process. By reducing the conscious attention given to monitoring,
researchers aim to capture more natural and representative data
that can improve the accuracy and reliability of HAR systems [8].

In 2014, Bulling et al. [3] described several research challenges
in creating datasets for human activity recognition that avoid bias.
These challenges, being still relevant to this date, include intra-
class variability, inter-class similarity, and the NULL-class problem.
Important in the context of the Hawthorne Effect is the intra-class
variability, which describes how data from the same class differ
between participants or sometimes even instances of one activity
from the same individual due to stress, fatigue, or an emotional or
environmental state in which the activity is performed. As such, the
Hawthorne Effect can be categorized as an intra-class variability
problem - which can have a direct effect on classifier capabilities
and performance.

3 METHODOLOGY
Study Protocol: To investigate any potential effects observation
of participants can have on collected inertial data, we asked 10
participants (4 females, 6 males) to perform a short workout across
multiple days, employing different types of observation (see Fig-
ure 1). The study was approved by our university’s ethics council.
Study participation was voluntary, and informed consent was ob-

Briefing & 
survey

Session 0: 
Video recorded & 

in-presence monitoring

Session 1: 
Video recorded & 

no in-presence monitoring

Session 3: 
Video recorded & 

in-presence monitoring

Session 2: 
No Video recorded & 

no in-presence monitoring

Figure 1: Applied study protocol. After having a briefing and
filling out a pre-study survey, each participant performed
the workout 4 times across 4 different days. The first and
last workouts (sessions 0 and 3) were video-recorded and per-
formed under the observation of at least one researcher. The
second and third workouts (sessions 1 and 2) were performed
without the observation of any researcher at a location cho-
sen by the participant (e.g. at home). The second workout
(session 1) was additionally video-recorded.

tained from all participants before the study. The workout plan
consisted of a fixed order of 5 different activities, i.e. jumping, walk-
ing, jogging_in_place, sit_ups, and jumping_jacks, each performed
for 120 seconds with breaks in-between the activities.

Before their first workout session, each participant was briefed
about the study protocol in a structured manner and shown sample
data collected by the tracking device. Participants were further
asked to answer a short survey asking for gender and age group as
well as whether they perform regular private workouts and a fitness
tracker in their daily lives (see Table 1). To avoid any unwanted
biases, participants remained unaware throughout the study that
the data would be analyzed to assess differences between supervised
and unsupervised recording setups. In total, each participant was
tasked to perform the workout 4 times using 3 different types
of observation. After having been briefed, each participant was
equipped with a smartwatch on their wrist of choice and given a
demonstration by one of the researchers of the correct execution
of each exercise. The smartwatch, a Bangle.js Version 1, was set



Hawthorne Effect in HAR UbiComp/ISWC ’23 Adjunct, October 08–12, 2023, Cancun, Quintana Roo, Mexico

Table 1: Pre-study survey answers provided by each partici-
pant. The survey asked participants to provide age, gender,
andwhether they perform regular privateworkouts andwear
a wearable device (e.g. fitness smartwatch) in their daily lives.

ID Age Gender Pvt. Workouts Pvt. Wearable
sbj_0 18-25 F ✗ ✗

sbj_1 26-35 F ✓ ✗

sbj_2 26-35 M ✓ ✓

sbj_3 18-25 M ✓ ✓

sbj_4 18-25 F ✗ ✓

sbj_5 26-35 M ✓ ✓

sbj_6 18-25 F ✗ ✓

sbj_7 18-25 M ✗ ✗

sbj_8 26-35 M ✗ ✗

sbj_9 26-35 M ✗ ✗

to record 3D accelerometer data at a constant sampling rate of
12.5 Hz with a sensitivity of ±8g using a custom, open-source
firmware[18]. The first workout session (session 0) was performed
under the observation of one researcher in a location decided by the
participant and researchers with a video-recording device taping
the execution of the routine. After the completion of session 0,
participants were walked through the control of the smartwatch
and tasked to perform the workout plan within the next days twice
at a location of their choice (e.g. their home) – one-time video-
recording (session 1) and another time without video-recording
their workout (session 2). Lastly, participants were invited back
to where they originally performed the first session and asked to
perform the workout a second time under the observation of a
researcher with a video recording in place (session 3). In between
the 4 sessions participants were asked to wear the smartwatch as
much as possible throughout their daily life, keep a brief recount of
their daily activities and note down the start and end times of each
of them. To further ensure the workout of interest can properly be
identified in the activity streams, each session started and ended
with the activity jumping. Having identified the workouts in the
inertial data recordings, the 3D-acceleration data streams were
cropped to only include the workout activities, labeled accordingly,
and saved session-wise for each participant into separate files.

Feature Analysis. The feature analysis incorporates a Fast
Fourier Transform (FFT), as depicted in Figure 2 and a compar-
ison of the total number of repetitions, indicated by the

∑
-sign,

and repetitions per second for a specific activity, indicated by the
∅-sign, taking into account the subject and session in which the
activity was performed. The results are presented in Table 2. Both,
the FFT [6] and the repetitions per second, calculated with a peak
detection algorithm [5], are calculated utilizing functions provided
by the SciPy community. The peak detection algorithm specifically
processes 1-dimensional time-series data. For our analysis, we com-
puted the magnitude of the accelerometer signal and employed it
for the algorithm. Given the periodic nature of the activities under
study, each positive peak observed in the signal can be interpreted
as indicating one repetition. To validate the accuracy of the peak
detection, a visual confirmation was conducted.

Deep Learning Analysis. As proposed by Ordoñez and Roggen
in [14], a popular methodology in human activity recognition re-
mains the usage of convolutional and recurrent layers. The former

is used to automatically extract discriminative features. Having
shown quantitative differences in the feature analysis, the follow-
ing will investigate the effect said (potential) differences have on the
performance and applicability of neural networks. All experiments
were conducted using a shallow DeepConvLSTM [2] employing a
kernel size of 3, 1024 hidden LSTM units, and inertial data which
was split into sliding windows of 1 second with a 50% overlap.
We reuse hyperparameters reported in [2], proven to work on a
multitude of activity recognition datasets, and only increase the
number of epochs (300) while employing a step-wise learning rate
schedule, decreasing the learning rate by a factor of 0.9 every 30
epochs. To minimize the risk of performance differences between
experiments being the result of statistical variance, reported metrics
are averaged across three runs using three different random seeds.
Our three types of experiments aim at answering three types of
questions: (1) Cross-session generalization: How well does a
network, trained using fully-observed data, predict data recorded
employing different degrees of observation? That is, for each sub-
ject, predict each session’s activities individually having trained on
all other subjects’ session 0 data. (2) Session differentiation: Can
a network be trained to classify data records into the respective
session type they originate from? That is, for each subject, predict
each data records session type having trained on all other subjects’
data. (3) Fully-observed overfitting: Are patterns learned by a
network overfitted on a subject’s fully-observed data transferable to
data employing different degrees of observation? That is, for each
subject, predict activities recorded during sessions 1, 2, and 3 using
a network overfitted, i.e. reaching close-to-perfect classification
scores, on session 0 data. In order to achieve the network overfit-
ting, these experiments involve increasing the number of epochs
(1000), learning rate (0.2) and applied learning rate scheduler step
size (250).

4 RESULTS
Overall, we were not able to prove that the Hawthorn Effect is
directly verifiable by any of the aforementioned analyzing methods
or that data recorded in various recording environments (controlled
or semi-controlled) differ significantly.

Feature Analysis. The analysis of the Fast Fourier Transform,
Figure 2, reveals that fully monitored sessions 0 and 3 generally do
not exhibit similar dominant frequencies, which is also the case for
semi-monitored and unmonitored sessions 1 and 2.

In particular, several activities and subjects align with our previ-
ously established hypothesis that the signal from session 3 should
converge back to that of session 0. Such behavior is evident for
sbj_6, sbj_7 and sbj_8 during the jumping_jacks activity, and for
sbj_2 during the sit_ups activity. It is important to acknowledge that
this bias may have arisen both due to the researcher’s observations
and the spatial variations in the workout environment. The fact
that this behavior is more evident while executing jumping_jacks,
might indicate that a Hawthorne Effect is limited to a specific kind
of activity. Further noteworthy differences are visible in the signals
of the activities jumping, jogging_in_place and sit_ups. Here, the
results of the FFT suggest that sbj_1, sbj_4, and sbj_9 altered their
activity execution behavior depending on the experience gained
during the study. The light-green (session 0) and blue (session 1)
most dominant frequencies are more similar to each other than red
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Figure 2: Fast Fourier Transform (FFT) calculated on every participant and every activity included in our study. Light-green
represents session 0 (monitored and video recorded), blue session 1 (non-monitored, video recorded at home), red session 2
(non-monitored, non-video-recorded), dark-green session 3 (monitored and video recorded)
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(1) Cross-session generalization 
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Figure 3: Per-subject and per-activity accuracy results of the (1) cross-session generalization and (3) fully-observed overfitting
experiments. Results are averaged across three runs using three different seeds. With the exception of sbj_6 differences
amongst sessions remain marginal. Though producing the on-average lowest results, data recorded in semi- and non-observed
environments shows to be similarly applicable in terms of predictive performance than compared to fully-observed data, and,
in the case of the semi-observed data, is even more reliably predicted by a network overfitted on fully-observed data.
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Table 2: This table shows the total number of repetitions
(
∑
) encountered in the activities’ signal and the number of

repetitions per second (∅). Every subject has 4 rows that rep-
resent the session. Activities that are marked as represent
cases where the number of repetitions per second was higher
during the monitored sessions than during the unmonitored
ones, activities colored in are activities where the number
of repetitions per seconds was higher during the unmoni-
tored sessions than during the monitored sessions.

jumping walking jogging_in_place jumping_jacks sit_ups
∑

, ∅
∑

, ∅
∑

, ∅
∑

, ∅
∑

, ∅

sbj_0

41, 1.68 39, 1.77 79, 1.92 32, 1.01 20, 0.61
51, 1.66 41, 1.28 43, 1.44 31, 1.03 16, 0,53
51, 1.64 40, 1.11 43, 1.41 32, 1.03 16, 0.52
61, 1.85 54, 1.34 75, 2.02 35, 1.08 27, 0.75

sbj_1

42, 1.33 45, 1.48 68, 2.17 65, 1.75 9, 0.23
40, 1.32 58, 1.70 60, 2.04 49, 1.66 10, 0.30
48, 1.48 51, 1.73 60, 2.08 47, 1.50 14, 0.27
47, 1.55 56, 1.55 39, 2.08 54, 1.73 11, 0.35

sbj_2

19, 0.70 48, 1.28 36, 1.15 30, 0.97 16, 0.37
19, 0.62 41, 1.34 37, 1.19 31, 1.00 13, 0.40
22, 0.69 39, 1.42 36, 1.20 31, 1.03 10, 0.32
18, 0.60 53, 1.33 36, 1.14 31, 0.99 16, 0.44

sbj_3

35, 1.08 67, 1.28 80, 2.62 40, 1.14 14, 0.43
32, 1.09 50, 1.35 78, 2.68 41, 1.36 13, 0.41
27, 0.96 37, 1.27 71, 2.61 42, 1.46 6, 0.364
30, 1.03 48, 1.44 72, 2.37 37, 1.20 10, 0.35

sbj_4

31, 1.07 39, 1.33 45, 1.45 58, 2.01 13, 0.45
30, 1.07 40, 1.14 42, 1.40 60, 1.93 10, 0.30
35, 1.16 37, 1.30 44, 1.45 59, 1.91 13, 0.38
29, 1.10 40, 1.18 47, 1.52 55, 1.90 10, 0.29

sbj_5

46, 1.59 46, 1.37 31, 1.03 33, 1.02 8, 0.32
47, 1.50 44, 1.42 32, 0.95 33, 1.05 10, 0.31
50, 1.68 35, 1.16 30, 0.98 31, 1.09 13, 0.26
46, 1.35 48, 1.27 28, 0.99 33, 1.05 11, 0.36

sbj_6

40, 1.25 52, 1.42 83, 2.58 55, 1.63 11, 0.34
42, 1.30 48, 1.35 78, 2.46 49, 1.63 11, 0.31
46, 1.44 42, 1.35 81, 2.58 48, 1.55 8, 0.244
52, 1.52 52, 1.56 87, 2.52 57, 1.75 11, 0.32

sbj_7

50, 1.58 42, 1.14 55, 1.64 31, 0.93 12, 0.35
56, 1.76 36, 1.16 40, 1.34 27, 0.89 12, 0.31
54, 1.79 27, 1.04 36, 1.18 28, 0.95 9, 0.30
56, 1.87 40, 1.09 39, 1.22 31, 0.94 11, 0.34

sbj_8

23, 0.76 36, 1.34 36, 1.21 31, 0.95 11, 0.34
29, 0.96 40, 1.32 33, 1.10 21, 0.87 10, 0.33
25, 0.90 40, 1.28 33, 1.07 24, 0.81 10, 0.32
53, 1.85 45, 1.46 33, 1.06 23, 0.74 9, 0.29

sbj_9

27, 1.06 48, 1.45 66, 2.34 37, 1.41 10, 0.28
27, 1.05 48, 1.44 67, 2.37 37, 1.42 8, 0.23
25, 0.91 49, 1.37 65, 2.59 31, 1.08 10, 0.34
24, 0.92 48, 1.38 65, 2.60 32, 1.08 9, 0.33

(session 3) and dark-green (session 4), which in turn show greater
similarities to each other than compared to the first two sessions 0
and 1.

Table 2 provides a color-coded depiction of repetition patterns
across each individual recording session. One can see that the table
does not reveal any universally applicable patterns that confirm the
Hawthorne Effect across all scenarios. Only two subjects, sbj_0 and
sbj_2, demonstrate a difference in the number of repetitions per
second between monitored and unmonitored sessions. More specif-
ically, sbj_0 shows an increase in repetitions for 4 out of 5 activities
when observed by a researcher, with only the activity jumping_jacks
not showing such a trend. However, this activity shows an equal

number of repetitions per second for both unsupervised sessions.
Similarly, sbj_2 demonstrates a higher frequency of repetitions for
the activities walking, jogging_in_place, and jumping_jacks; yet,
this behavior is even less commonly observed compared to the first
scenario.

Deep Learning Analysis. Table 3 summarizes the average ac-
curacy and macro F1-scores obtained during each of the three deep-
learning-based experiments. Using data recorded during session 0,
i.e. data originating from the same session as data used for training
the network, resulted, as expected, in the highest validation metrics
(70% accuracy and 64% macro F1-score). Further, being recorded
under the same conditions, validating using data recorded during
session 3 resulted in the second-to-best results, being on average
only around a percentage point worse than the validation using
session 0 data. Surprisingly, using the self-recorded participant data
(sessions 1 and 2) for validation did not result in a significant drop
in performance. Even though participants recorded themselves in a
completely unmonitored recording setup (session 2) performance
drops were only around 4% compared to using fully-observed data.
With accuracy scores being close to random guessing, Table 3 fur-
ther shows that the shallow DeepConvLSTM [2] was incapable
of being trained to differentiate data records based on the session
which they originate from. Lastly, inference of networks overfit-
ted on session 0 data showed to produce similar results across all
sessions, with, though applying a different observation scenario,
session 1 (semi-observed) producing the highest classification re-
sults. Overall, the results of all three experiments suggest that the
predictive performance of the network of choice only marginally
suffers when being used for inference on data recorded by applying
a different degree of observation.

Table 3: Average accuracy and F1-scores of the three types
of performed experiments ((1), (2) and (3)). Experiments are
divided by the type of session data used during validation. Re-
sults are the averages and standard deviation across subjects
across three runs using three different seeds. Note that given
the altered prediction scenario (session instead of activity
type) experiment (2) does not involve splitting each subject’s
data into different session types.

Exp Val. Set Accuracy F1-score

(1
)

Session 0 70.11 ± 10.55 64.45 ± 12.07
Session 1 64.46 ± 13.11 60.18 ± 13.48
Session 2 66.02 ± 8.10 62.35 ± 8.93
Session 3 69.33 ± 12.34 65.81 ± 12.45

(2
) All 25.21 ± 3.32 21.90 ± 3.05

(3
)

Session 1 77.58 ± 11.18 76.74 ± 11.37
Session 2 71.42 ± 8.21 69.55 ± 9.89
Session 3 75.87 ± 9.31 74.27 ± 10.32

Especially visualization of the per-class and per-participant re-
sults of the (1) cross-session generalization and (3) fully-observed
overfitting experiments (see Figure 3) shows that, besides sbj_6,
results remained stable across all sessions. Even though the non-
observed setup (session 3) remained on average the least performant
session, it nevertheless shows the lowest standard deviation across
subjects.
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5 CONCLUSIONS AND DISCUSSION
This paper presented a data-driven investigation aiming at mea-
suring the effects of the Hawthorne Effect in the context of Hu-
man Activity Recognition. The study involved the recording of
10 participants performing 5 distinct activities on 4 different days.
With the first and last day being supervised and video-recorded by
researchers, the remaining two days had participants self-record
themselves at a location of their choice with and without video
recording in place. To avoid potential biases, participants remained
unaware throughout the study that the data would be analyzed to
assess differences between supervised and unsupervised sessions.
As part of analyzing the captured data, we employed a feature and
deep learning analysis, ultimately concluding that the recorded data
does not exhibit a measurable Hawthorne Effect. While the feature
analysis did not reveal any generalizable patterns, the deep learning
analysis showed that data originating from the unmonitored ses-
sions produced similar classification results and even outperformed
the fully observed in some cases. Although our findings do not
dismiss the existence of the Hawthorne Effect, especially given the
numerous clinical trials proving said effect, (see Section 1), it does
challenge the prevailing notion of the applicability of laboratory
compared to in-the-wild recorded data. Results of our study show
that though an altered behavior of participants might be present,
classification algorithms seem to learn discriminative features of
similar applicability regardless.

At this point, it is important to acknowledge the limitations of
this study and discuss possible reasons why the effects between
the different observation scenarios were not as pronounced as we
hypothesized when designing the study. Generally, the recorded
dataset may not have the necessary size to draw generalizable con-
clusions and can only indicate a trend. Furthermore, the recorded
activities solely represent a subset of periodic nature within the
broader context of activity recognition. Several reasons for the lack
of significant differences could be: (1) The participants were for
all observation settings made aware that their inertial data was
recorded (as this is required by the ethics council). This might mean
that a possible Hawthorne Effect could have been present under all
measured conditions and that this was not more pronounced when
observed by additional cameras and the researchers being present.
(2) The choice of activities could have resulted in overly simplis-
tic movement classes that make it hard to find stark differences
between the different observation sessions through our analysis
methods. (3) It is also possible that the Hawthorne Effect in general
is relatively small for our five-activity-class scenario when com-
pared tomore behavior-oriented activities (such as "brushing teeth")
or fine-grained characterizations (for instance for gait analysis).

Due to the inherently limited interpretability of neural networks
and the opaqueness of their decision-making processes, it is uncer-
tain whether the observed disparities in prediction performance
can be attributed solely to varying learned feature representations
resulting from different levels of observation. Therefore, further
investigation is warranted to explore the presence and potential
impact of these influences. We believe that the results of this pa-
per’s study are nevertheless worthy of more discussion and we
encourage others to perform further, more extensive research on
this topic.
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